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Abstract—Portfolio methods represent a simple but efficient
type of action abstraction which has shown to improve the
performance of search-based agents in a range of strategy games.
We first review existing portfolio techniques and propose a new
algorithm for optimization and action-selection based on the
Rolling Horizon Evolutionary Algorithm. Moreover, a series of
variants are developed to solve problems in different aspects. We
further analyze the performance of discussed agents in a general
strategy game-playing task. For this purpose, we run experiments
on three different game-modes of the STRATEGA framework. For
the optimization of the agents’ parameters and portfolio sets we
study the use of the N-tuple Bandit Evolutionary Algorithm. The
resulting portfolio sets suggest a high diversity in play-styles while
being able to consistently beat the sample agents. An analysis
of the agents’ performance shows that the proposed algorithm
generalizes well to all game-modes and is able to outperform
other portfolio methods.

Index Terms—Portfolio Methods, General Strategy Game-
playing, Stratega, N-Tuple Bandit Evolutionary Algorithm

I. INTRODUCTION

Digital real-time strategy games (RTS) represent a challeng-
ing genre for the development of artificial intelligence (AI). In
RTS games, an AI agent is usually tasked to control a large
set of units along a battlefield over a prolonged time-span. The
difficulty arises from the large set of actions available to each
unit and the complexity of controlling all of the units at the
same time. As a result, the game tree complexity of a game
like Starcraft significantly exceeds the complexity of Go.

A possible method for addressing the complexity of a strategy
game’s action space is the use of action abstractions. The most
basic abstraction is a script, which given a game-state and a
unit, selects an appropriate action to be executed. Developing
a well-performing script is a demanding task in terms of time
and complexity. Instead of implementing a single, complex
and hand-written rule-based player, search-based agents can
make use of a portfolio, formed by a set of simple scripts, to
guide their search. Meaning, the search-based agent chooses the
next script which selects a suitable action instead of searching
through the original action space.

The use of a portfolio fixes the number of available options
per turn (one action per script), and therefore, limits the breadth
of the search tree. As a result, we can increase the search-depth
when given the same amount of computation time. Portfolio

methods have been tested in games like Starcraft [1] and
MicroRTS [2], and have shown to significantly improve a
search-based agent’s performance.

With the recent advancements in strategy game AI, e.g.
the success of AlphaStar [3], we believe that the time is
ripe to approach general strategy game-playing. In contrast to
single game-playing, general game-playing requires an agent to
perform well in several games. Search-based approaches have
shown to perform well in general game-playing tasks, such as
the games of the general video game AI (GVGAI) competi-
tion [4] or Stanford’s general game-playing competition [5]. In
this work, we want to test if portfolio methods are up to the task
of playing a set of strategy games with common characteristics.
For this purpose, we developed STRATEGA [6, 7], a general
strategy games framework, which allows the definition of a
wide variety of strategy games using a common API.

In this study, we want to propose and compare portfolio-
based search algorithms for playing general strategy games.
Our contributions can be summarized by:

• Portfolio RHEA: We combine portfolio online evolution
with the rolling horizon evolutionary algorithm to propose
a new kind of portfolio algorithm. Furthermore, we
propose a multi-objective variant and a sparse encoding of
genomes for long-time consistency of script assignments.

• Optimization of portfolios and parameter sets: We
use the N-tuple bandit evolutionary algorithm to tune
the parameter sets and portfolio composition for each
game-mode. Our evaluation shows that the optimization
procedure is able to detect varying successful play-styles.

• Comparing performance and play-styles: We compare
the performance of reviewed and proposed portfolio meth-
ods in a separate round-robin tournament. Additionally, we
analyze the agents’ portfolio usage profiles with respect to
the three game-modes to study their varying play-styles.

In Section II we review the STRATEGA framework and its re-
spective game-modes. An introduction to portfolio-based search
methods and the scripts used for playing STRATEGA games
is presented in Section III. In Section IV we propose new
portfolio methods based on the rolling horizon evolutionary
algorithm. Our proposed optimization procedure will be covered
in Section V. The agents’ performance and play-styles are
evaluated in three game-modes in Section VI. We conclude
the paper with an outlook of future work in Section VII.978-1-7281-8393-0/21/$31.00 ©2021 IEEE



(a) A screenshot of the framework’s current GUI. (b) Structure of the framework.

Fig. 1: Overview of the STRATEGA framework.

II. STRATEGA

STRATEGA is a framework for studying AI development
for general strategy games [7]. It allows the implementation
of turn-based and real-time strategy games similar to games
like Fire Emblem1 or Starcraft. Games are represented from a
top-down view showing the battlefield. Each player controls
a set of units, which can each be moved along the battlefield,
attack other units, and make use of their special abilities.

The STRATEGA framework’s components and its GUI are
shown in Figure 1. Using the YAML markup language, users
can configure a game’s components, including but not limited to,
map tiles, units, and their abilities as well as the agents and their
parameters. Game communicators allow the agents to observe
the current game-state. In future iterations of the framework,
they will be used as access point for developing agents in
other programming languages. The framework’s graphical user
interface allows the developer to play the game and debug
developed agents by showing information on the game-state and
agents in several floating windows. Additionally, the framework
actively supports logging of game-play statistics and profiling
of developed agents and game-modes.

In this work, we focus on turn-based, grid-based, multi-
unit, multi-action games with two players. Such a game can
be described as a zero-sum two-player game in which the
current player can execute an action to move the game forward.
Each unit has a range of actions it can execute, some popular
examples include moving, attacking, and using abilities like
healing another unit. Executing any of these actions, will change
the game-state and reduce the number of the units remaining
actions for this turn by one. Since the game allows a player
to control multiple units, players can choose the unit and its
action that should be executed next. At each given point in
time, the current player can choose to end their turn, which
also ends automatically in case none of the player’s units can
execute any actions.

1Nintendo, 1990

STRATEGA comes with a variety of pre-implemented game-
modes. In this work, we will be testing the implemented agents
in three turn-based game-modes, each highlighting a different
aspect of the framework, and therefore, posing a different
challenge to the tested agents.

• The game-mode Kings shares similarities with chess.
Here, the players control a set of units and try to
defeat the opponent’s king. Each unit is unique in its
attributes, including health, attack damage, movement and
attack range. When a player’s king is killed, the player
immediately loses the game.

• Our second game-mode Pushers requires the agents to
use the unit’s special ability for pushing another unit into
nearby holes. Agents will need to avoid holes to stay alive.
Using multiple pushes in the same turn can allow killing
other units quickly.

• The game-mode Healers shifts the focus to the healer
unit and its ability to replenish its own and another unit’s
health. At the end of each turn, all units receive a fixed
amount of damage. This forces the agents to quickly group
their units and make effective use of the healer’s ability.
The player whose units survive the longest wins the game.

All games in STRATEGA are played through a common
interface for AI agent development, which provides access
to the game’s forward model (FM). An FM allows agents to
simulate the outcome of their actions by providing a potential
future state after supplying a state-action pair. STRATEGA’s
components have been optimized for speed, to allow as many
simulations as possible per second. Using a Windows 10 x64,
with CPU: I7-6700HQ 2.60GHz; RAM: 16Gb; GPU GTX960m
the simulation allows for ≈ 100 000 forward model calls per
second in turn-based mode and ≈ 35 000 calls per second in
real-time strategy mode.

More information on our project can be found under:
https://gaigresearch.github.io/afm/

The current state of the framework can be accessed at:
https://github.com/GAIGResearch/Stratega

https://gaigresearch.github.io/afm/
https://github.com/GAIGResearch/Stratega


III. PORTFOLIO-BASED SEARCH METHODS

A. Portfolio-based Action Abstractions

A script is a function mapping a state and a unit to an
action. Portfolio-based methods make use of a set of scripts to
determine the suitable actions among all the actions available to
the agent. While traditional search algorithms navigate through
the action space, portfolio methods search through the script
space. Therefore, each decision is reduced to the script that
should be applied next.

For our evaluation, we implemented six simple scripts, which
focus on different aspects of the game.

• Attack Closest: Attack the closest opponent unit in range.
If no unit is close, walk to the closest opponent. In case
no enemy is visible, act randomly.

• Attack Weakest: Attack the weakest opponent unit in
range. If no unit is close, walk to the weakest known
opponent unit. In case no enemy is visible, act randomly.

• Run Away: Walk to the tile that maximizes the distance
to all known opponent units. In case no enemy is visible,
act randomly.

• Run To Friends: Walk to the tile that minimizes the
distance to all friendly units. In case no friendly unit
exists, act randomly.

• Use Special Ability Use any special ability of this unit.
Choose a random action in case no special ability is
available.

• Random: Use a random action. Required to ensure a small
chance of selecting any action, and therefore, ensures that
the whole search space can be explored.

B. Portfolio Greedy Search (PGS)

PGS is an any-time greedy search algorithm that assigns a
script to each of the player and the opponent’s units. It has
been initially designed for RTS combat micro [1] to tackle
efficient decision making in complex search spaces. Instead
of maximizing the number of states explored during a search,
PGS narrows down the search to actions returned by scripts.
Using a hill-climbing procedure, the player first optimizes the
initial script assignment of the player’s units. Afterwards, the
opponent’s script assignment is improved to model a stronger
opponent. The process is repeated multiple times to improve
the overall quality of the agent’s response. PGS has shown to
perform well in several strategy games [1, 2] and represents
one of the baseline algorithms for our evaluation.

In previous work, it has been shown that the alternating
optimization scheme of PGS may not converge. This can occur
because of the agent’s improve procedure of the opponent’s
and the player’s script assignments may be trapped in a never-
ending cycle of optimizations (cf. [2]). This can be avoided
by only optimizing the player’s actions. However, this requires
knowledge about the opponent’s strategy to be accurate. If this
is not the case, the player’s improvement procedure is highly
exploitable.

C. Portfolio Online Evolution (POE)

POE replaces the hill-climbing procedure of PGS with
evolutionary optimization. Here, each individual encodes the
script assignment for units in the current game-state. An
individual’s fitness is determined by simulating a play-out of
fixed length and applying a heuristic in the case of non-terminal
game-states. During a simulation, the opponent’s actions will
be selected by sampling from a fixed script.

At the start of each game turn, the agent generates a
population of random individuals (unit-script assignments).
Those are iteratively improved by mutating and recombining the
fittest individuals. For mutating individuals, we chose a uniform
mutation that randomly replaces a unit’s script assignment with
probability p. The crossover operator recombines the script
assignments of two individuals, by randomly choosing a parent
from which it samples the script assignment. Every time a
unit’s action has been executed, the current population will be
reused until the end of the turn.

Similarly to PGS, POE has shown to perform well in
several strategy games [8, 9]. They both represent the baseline
algorithms in our evaluation of portfolio optimizing agents.
A comparison of portfolio-based search methods has recently
been published by Moraes et al. [10]. It presents a unifying
perspective of PGS and POE as instances of the General
Combinatorial Search for Exponential Spaces (GEX) algorithm.

IV. PORTFOLIO ROLLING HORIZON EVOLUTIONARY
ALGORITHM (PRHEA)

While POE optimizes the unit-script assignment for a single
turn, we want to propose a different optimization strategy based
on the rolling horizon evolutionary algorithm (RHEA) [11].
Since many turn-based strategy games allow the agents to
observe the result of a single unit’s action, we can use the new
observation to reevaluate the agent’s unit-script assignment.
This is especially important in case the game-state is only
partially observable, such that fog of war covers all tiles that
are not in the immediate field of vision of one of the agent’s
units. Moving a unit may uncover new opponents that require
the agent to react accordingly.

In games featuring a single action per turn, individuals of
the RHEA algorithm encode a sequence of unit actions with
a fixed length. After the sequence has been optimized by an
evolutionary algorithm, the first action of the best individual is
executed. Furthermore, the action is removed from the sequence
and a random action is appended at the end of the sequence.
The resulting individual is used to initialize a new population of
units, which will be used to search for the best action in the next
turn or game frame. RHEA has already shown good playing
performance in the context of general game-playing [12]–[14].

In PRHEA for multi-action turn-based games, we replace
the individuals encoding with a sequence of scripts instead of
actions. Hence, an individual can be evaluated by executing
all the actions returned by the sequence of scripts, whereas a
script is applied to the unit with the lowest ID that has actions
left. In the following, we propose two specialized variants of
PRHEA.
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Fig. 2: Comparison of encoding strategies of unit script assignments.

A. Multi-objective Portfolio RHEA (MO-PRHEA)

Strategy games may require an agent to chase multiple
goals at once, e.g. killing the opponent’s units while keeping
your own units alive. We want to reflect this multi-objective
optimization problem, by proposing a multi-objective variant
of the PRHEA algorithm, called MO-PHREA. To test the
approach, we implemented the non-dominated sorting genetic
algorithm (NSGA-2) [15] for optimizing the script assignment
sequences of PRHEA.

All other agents rely on a single heuristic that considers
the strength and the health of the player’s and the opponent’s
units. Due to the limited search depth of these agents, we have
observed that fights on large maps often result in a draw since
the agents are not able to find each other. We have chosen
to implement a second heuristic, that measures the average
distance of the player’s units to the opponent’s units. Whereas
the first heuristic should be maximized, the agent will try to
minimize the average distance measured by the second heuristic.
During the optimization, NSGA-2 will try to find a Pareto-front
for both heuristics. Nevertheless, when the agent selects the
final action, it will prefer individuals that score well in the
first heuristic. While this has shown to be the best performing
strategy for the tested games, other selection strategies may
allow to implement different agent personas.

B. Sparse Portfolio RHEA (S-PRHEA)

In a preliminary evaluation of agents introduced above, we
observed that POE and PRHEA struggle with optimizing long
action sequences. A common scheme we observed is that
the agents did not consistently use their units. While strong
attackers had been used to attack the opponent and run back
to defend the player’s units, healers had been used to heal
and attack. A higher efficiency would have been achieved if
the agent had stuck with the same script assignment for a
prolonged time-frame.

To plan long sequences, we propose the S-PRHEA algorithm
which uses two separate genomes for a single individual. The
first genome encodes a unit-script assignment similar to POE.
In its second genome, S-PRHEA encodes script assignment
changes. Each change includes three variables, (1) the ticks
left until this script change should be executed, (2) the unit
that will be affected, and (3) the new script assigned to the
unit. Every time an action is being executed the tick counter
will be reduced by one. In case it reaches 0, the script change
will be applied to the first genome and a new random script
change will be added to the list (cf. Figure 2).

By keeping the script assignment constant in the absence
of change events, the agent is now able to consistently select
and execute a script for each unit. In exchange, the search
space is expanded by the possible combinations of the second
genome. Depending on the number of turns simulated, and the
number of available units and scripts, it can become a daunting
task to find a useful script change with the correct timing.
Therefore, it may be practical to dynamically balance the time
spent on optimizing both genomes. Another solution may be
to use cooperative co-evolution for optimizing two separate
populations, each containing genomes of the same type.

V. PARAMETER AND PORTFOLIO OPTIMIZATION

The methods reviewed and proposed in the previous sections
have plenty of parameters that can be adjusted. Not just can the
search behavior be modified through the algorithm’s internal
parameters, but we can also define the search space in terms of
the set of scripts that are included in the agent’s portfolio. To
approach this demanding task, we propose to use the N-Tuple
Bandit Evolutionary Algorithm (NTBEA) [16].

For each pair of algorithm and game-mode, NTBEA was
given the budget to evaluate 100 parameter combinations. The
fitness of a selected parameter set is evaluated by simulating
20 games against a rule-based agent. The framework’s combat
agent has been used as an opponent for the game-modes
Healers and Kings. It focuses on attacking isolated units while
healing the agent’s own units. When attacking or healing a unit,
the agent prioritizes units with high strength. The rule-based
pushers agent has been used for its respective game-mode and
uses path-planning to find ways for pushing opponent units
into a trap. A detailed description of the rule-based agents can
be found in our previous paper [7]. The fitness is increased by
3 for each win and remains unchanged after a loss. After 100
turns the game is automatically terminated and it results in a
draw. In this case, the agent’s fitness is increased by 1. The
turn limit has proven to be mostly sufficient since the mean
number of turns until a win or loss has been observed to be
29.07 (Kings), 6.27 (Healers), and 3.48 (Pushers) respectively.
The result of our optimization procedure is show in Tables
I-III. We separately compare the portfolios in Figure 3.

Most interestingly are the different portfolios found for each
algorithm and game-mode. For the game-mode Kings, most
algorithms have excluded the Run Away, Run to Friend, and
Random scripts. While Run to Friend can be helpful for the
healer unit, it cannot effectively be used for other unit types. All
but the PGS agent are able to beat the combat agent consistently.
In the game-mode Healers, the portfolios are more diverse.



TABLE I: Results of the NTBEA parameter optimization for the game mode Kings

Kings Population Individual Mutation Tournament Number of Response Elitism Continue
Size Length Rate Size Changes Iterations Search

{1, 10, 100} [1, 10] {0.1, 0.5, 0.9} {3, 5, 10} [1, 3, 5, 10] [1, 5] {×,X} {×,X}

PRHEA 1 1 0.5 5 — — X X
MO-PRHEA 1 1 0.1 5 — — X X

S-PRHEA 1 3 0.5 5 5 — X X
POE 1 3 0.5 5 — — X X
PGS — 3 — — — 4 — —

TABLE II: Results of the NTBEA parameter optimization for the game mode Pushers

Pushers Population Individual Mutation Tournament Number of Response Elitism Continue
Size Length Rate Size Changes Iterations Search

{1, 10, 100} [1, 10] {0.1, 0.5, 0.9} {3, 5, 10} [1, 3, 5, 10] [1, 5] {×,X} {×,X}

PRHEA 100 3 0.5 5 — — X X
MO-PRHEA 100 1 0.1 3 — — X X

S-PRHEA 100 3 0.1 3 5 — X X
POE 10 5 0.9 3 — — X X
PGS — 2 — — — 3 — —

TABLE III: Results of the NTBEA parameter optimization for the game mode Healers

Healers Population Individual Mutation Tournament Number of Response Elitism Continue
Size Length Rate Size Changes Iterations Search

{1, 10, 100} [1, 10] {0.1, 0.5, 0.9} {3, 5, 10} [1, 3, 5, 10] [1, 5] {×,X} {×,X}

PRHEA 100 10 0.1 3 — — X X
MO-PRHEA 10 1 0.1 5 — — X X

S-PRHEA 100 1 0.1 10 5 — X X
POE 10 3 0.1 3 — — X X
PGS — 3 — — — 1 — —
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Fig. 3: Overview of the algorithms’ optimized portfolio sets and their performance against the rule-based agents throughout the
three tested game-modes. A black square indicates that the script has been included.



The best performing agent, PRHEA, focuses on the two scripts
Use Ability and Run To Friend. As explained before, those are
especially useful for using the healer unit effectively. Other
algorithms focus on their fighting capabilities and include attack
actions. Both strategies seem to be able to consistently beat the
combat agent. For the final game-mode pushers, agents were
less successful. This has been an expected result since none of
the scripts has been specifically designed for the Push action.
In contrast to the special ability Heal, the Push ability is only
useful in case preconditions are satisfied, i.e. the opponent is
standing next to a hole. Therefore, the success rate of the Use
Ability script is generally lower than in the other game-modes.
Additionally, it is worthwhile remembering that the attacking
scripts effectively become equal to the random script because
none of the agent’s units will be able to attack.

Similar interesting observations can be made for the algo-
rithm’s parameter sets. In the combat scenarios of Kings, all
agents prefer a population size of 1, effectively using a 1 + 1
evaluation. In this case, we can ignore the tournament size
since the agent solely relies on mutation. When we look at the
parameter sets of the game-modes Healers and Pushers, we
can see that all algorithms prefer larger population sizes. This
becomes especially relevant in the game-mode Pushers because
the introduction of many random individuals per generation
raises the chances of sampling a push action. In the case of the
parameters elitism and continue search, it is of no wonder that
the algorithms prefer to reuse the result of the previous iteration
during and after action selection. This increases the agent’s
consistency and ensures that once a good action sequence has
been found it can be executed entirely. The S-PRHEA agent
seems to prefer to store 5 changes in its second genome. This
has been the highest value in the search space, which suggests
that the algorithm prefers more variation over time.

VI. PERFORMANCE COMPARISON

After having optimized the parameter sets, we compare the
game-play performance of the introduced portfolio methods.
Therefore, we simulate a round-robin tournament of 200 games
per pair of agents and measure their win-rate. Since the starting
position is randomized and one player’s starting position may
be advantageous, we use the seeds 1 to 100 for simulating
rematches with swapped starting positions. Therefore, each
map is played two times with interchanged roles. The maximal
length of a game has been set to 100 turns. In case no player
has met the winning condition by then, the game results in a
draw. Figure 4 shows a heatmap visualizing the win-rates of
all tested agents and their total number of wins, draws, and
losses. Each cell (i, j) shows the win-rate of the agent in row
i against the agent in column j.

In all three game-modes, the PRHEA agent has scored the
most wins and was able to win at least 50% of its games
against the other agents. This is in line with its results against
the rule-based agents. In the game-mode Healers, we saw
two strategies emerging against the rule-based agent. While
PRHEA has focused on healing and staying together as a group,
other agents focused on winning by attacking the opponent.
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Fig. 4: Performance comparison in a round-robin tournament
of 200 games per match-up throughout the three tested game-
modes. Each cell (i, j) shows the win-rate of the agent in row
i against the agent in column j. The columns to the right show
the total number of wins, draws, and losses per agent.
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Fig. 5: Portfolio usage profiles for each combination of agent and game-mode. Each axis shows the relative usage of a script
while playing against the rule-based combat agent. Meaning of abbreviated axis descriptions in clockwise order starting from
the top: AW = attack weakest, AC = attack closest, RA = run away, RF = run to friend, UA = use ability, RND = random script.

Our evaluation shows that the former is the better strategy
when matched against each other. PRHEA wins 686 out of
800 games against the other agents, showing a clear superiority
against every one of them.

The MO-PRHEA and the PGS agents have scored second
best. In the game-mode Kings MO-PRHEA has outperformed
PGS, which is likely due to using the same portfolio as PRHEA.
In the other two game-modes, PGS performed surprisingly well
considering that its score against the rule-based agent has not
stood out. This may be due to the opponent model used for
the initialization of the unit-script assignment in PGS. Here,
we used the attack closest script, which often coincided with
the made decisions by the opponent’s agent. Therefore, PGS
has been able to outplay its opponents by choosing a valid
counter-strategy.

Both S-PRHEA and POE did not perform well in comparison
with other agents, despite their comparable performance against
the rule-based agents. This might be due to their portfolio or
related to the algorithm itself. We hope that we can gain more
insights by further analysis of these two methods in future
work.

A. Portfolio Usage Profiles

In a second evaluation, we want to get more insight into the
agents’ strategical decisions by comparing their portfolio usage
when being provided with the same set of scripts. Therefore,
we simulated 1000 games against the rule-based agents for
each combination of portfolio agents and game-modes. During
the game, we record the usage statistics of a script each time
it is used to return an action for execution. Figure 5a and
Figure 5b show a comparison of the agents’ portfolio profiles.

It is interesting to see how the portfolio profiles vary per
game-mode and agent. In the game-mode Kings, all agents tend
to use the scripts uniformly. This stands in stark contrast to the
results we obtained by using NTBEA to optimize the portfolio
sets, in which all agents have focused on the attack scripts.
In the case of the game-mode Healers, we see S-PRHEA
and POE exhibiting a profile that more often relies on the
random action script. This may be a weakness that also explains
their relatively weak performance in our previous experiment.
Surprisingly, their profiles are very similar in all three game-
modes. In contrast, the PGS agent exhibits a profile that is very
different from the other agents in the game-modes Healers



and Pushers. Here, the agent strongly favors the two attack-
based scripts. We expect that the difference of PGS stems from
its initialization procedure in which the attack weakest script
is assigned to all units. Another obvious change in respect
to the NTBEA optimized portfolio sets can be observed for
the PRHEA agent. When being provided with all scripts, the
PRHEA agent also uses a combat-oriented strategy instead of
focusing on healing actions in the game-mode Healers. For the
game-mode Pushers, we also see different portfolio profiles
emerging. However, as mentioned before, multiple scripts will
result in random actions being returned in case no applicable
action can be found in the action space. Therefore, observed
differences are less meaningful than for other game-modes.

VII. CONCLUSION

In this work, we have proposed three new portfolio methods
based on the rolling horizon evolutionary algorithm, i.e.
PRHEA, MO-PRHEA, and S-PRHEA. To optimize their pa-
rameter and portfolio sets we employed the NTBEA algorithm,
which was able to uncover a variety of play-styles in the
three tested game-modes of the STRATEGA framework. In a
subsequent evaluation of the agents’ performance, the PRHEA
agent has shown to perform best. Proposed variants have shown
to perform well against the rule-based agent, but were not able
to beat the baseline methods PGS and POE. A comparison of
the agents’ portfolio usage profiles has shown that the agents
favor different play-styles when being provided with the whole
set of scripts. This highlights the interesting opportunities of
optimization methods like NTBEA for uncovering new play-
styles by optimizing an agent’s portfolio set.

In future work, we want to extend our analysis on portfolio
optimization to enhance the variability of search-based agents.
Algorithms like map-elites [17] may help to find a diverse set
of well-performing strategies. Additionally, we plan to analyze
methods for script generation to explore the strategy space and
complement an agent’s portfolio.

In another line of work, we plan to analyze game-state
abstractions to improve the search efficiency in large state
spaces as they can be found in strategy games. While action
abstractions have been a common theme in recent research
on portfolio methods, game-state abstractions, which have
the potential to drastically reduce the search space, have not
received the same attention.

Finally, as the STRATEGA framework is still being developed,
we will incorporate more complex games into this study, which
will bring common features in strategy games such as economic
management, technology trees, and build orders.

ACKNOWLEDGEMENTS

This work is supported by UK EPSRC research grant
EP/T008962/1 (https://gaigresearch.github.io/afm/).

REFERENCES

[1] D. Churchill and M. Buro, “Portfolio greedy search and simulation
for large-scale combat in starcraft,” in 2013 IEEE Conference on
Computational Inteligence in Games (CIG). IEEE, Aug. 2013.

[2] R. O. Moraes, J. R. H. Mariño, and L. H. S. Lelis, “Nested-greedy search
for adversarial real-time games,” in AIIDE, 2018.

[3] O. Vinyals et al., “Grandmaster level in starcraft ii using multi-agent
reinforcement learning,” Nature, vol. 575, no. 7782, pp. 350–354, Nov
2019. [Online]. Available: https://doi.org/10.1038/s41586-019-1724-z

[4] D. Perez-Liebana, J. Liu et al., “General Video Game AI: A Multitrack
Framework for Evaluating Agents, Games, and Content Generation
Algorithms,” IEEE Transactions on Games, vol. 11, no. 3, pp. 195–214,
2019.

[5] M. Genesereth, N. Love, and B. Pell, “General Game Playing: Overview
of the AAAI Competition,” AI magazine, vol. 26, no. 2, pp. 62–62, 2005.

[6] A. Dockhorn, J. H. Grueso, D. Jeurissen, and D. Perez-Liebana, “Stratega:
A General Strategy Games Framework,” in Artificial Intelligence for
Strategy Games Decision, AIIDE 2020 Workshop, 2020.

[7] D. Perez-Liebana, A. Dockhorn, J. Hurtado-Grueso, and D. Jeurissen,
“The Design Of Stratega: A General Strategy Games Framework,” arXiv
preprint arXiv:2009.05643, 2020.

[8] N. Justesen, T. Mahlmann, and J. Togelius, “Online Evolution for Multi-
action Adversarial Games,” in European Conference on the Applications
of Evolutionary Computation. Springer, 2016, pp. 590–603.

[9] N. Justesen, T. Mahlmann et al., “Playing multiaction adversarial games:
Online evolutionary planning versus tree search,” IEEE Transactions on
Games, vol. 10, no. 3, pp. 281–291, 2017.

[10] L. H. S. Lelis, “Planning algorithms for zero-sum games with
exponential action spaces: A unifying perspective,” in Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence.
International Joint Conferences on Artificial Intelligence Organization,
Jul. 2020. [Online]. Available: https://doi.org/10.24963/ijcai.2020/681

[11] D. Perez-Liebana, S. Samothrakis, S. M. Lucas, and P. Rolfshagen,
“Rolling Horizon Evolution versus Tree Search for Navigation in
Single-Player Real-Time Games,” in Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO), 2013, pp. 351–358.

[12] R. D. Gaina, J. Liu, S. M. Lucas, and D. Pérez-Liébana, “Analysis
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