
Balancing Exploration And Exploitation
in Forward Model Learning

Alexander Dockhorn and Rudolf Kruse

Abstract Forward model learning algorithms enable the application of simulation-
based search methods in environments for which the forward model is unknown.
Multiple studies have shown great performance in game-related and motion control
applications. In these, forward model learning agents often required less training time
while achieving a similar performance than state-of-the-art reinforcement learning
methods. However, several problems can emerge when replacing the environment’s
true model with a learned approximation. While the true forward model allows the
accurate prediction of future time-steps, a learned forward model may always be
inaccurate in its prediction. These inaccuracies become problematic when planning
long action sequences since the confidence in predicted time-steps reduces with
increasing depth of the simulation. In this work, we explore methods for balancing
risk and reward in decision-making using inaccurate forward models. Therefore, we
propose methods for measuring the variance of a forward model and the confidence
in the predicted outcome of planned action sequences. Based on these metrics, we
define methods for learning and using forward models under consideration of their
current prediction accuracy. Proposed methods have been tested in various motion
control tasks of the Open AI Gym framework. Results show that the information on
the model’s accuracy can be used to increase the efficiency of the agent’s training
and the agent’s performance during evaluation.

Alexander Dockhorn
Queen Mary University, London, UK e-mail: a.dockhorn@qmul.ac.uk

Rudolf Kruse
Otto von Guericke University, Magdeburg, Germany e-mail: rudolf.kruse@ovgu.de

1

a.dockhorn@qmul.ac.uk
rudolf.kruse@ovgu.de


2 Alexander Dockhorn and Rudolf Kruse

1 Introduction

Forward Model Learning describes the process of learning a model of a priori
unknown environments. This enables an agent to anticipate the outcome of planned
action sequences and use simulation-based search techniques to optimize its behavior.

This chapter builds upon our recent work on forward model learning in games [1]
and directly extends our work on forward model learning for motion control tasks [12].
Previous studies have shown that reliable forward models can be learned by obser-
vation. Since no information on the environment is available, we have chosen to
implement an uninformed training process in which the agent uses random actions to
explore its environment. This results in many interactions being wasted due to (1)
repeating a known interaction and (2) neither focusing on improving the model nor
improving the agent’s performance. As a result, we have observed that the model may
be unreliable since large amounts of the state space remain unobserved. In return, the
agent’s performance during the evaluation will be limited by the prediction accuracy
of the trained forward model.

Motivated by these shortcomings, we study methods for improving the efficiency
of the agent’s training process. Therefore, we formulate two learning goals (1)
the exploration of the environment to train a reliable forward model, and (2) the
exploitation of promising action sequences to become more proficient in the given
task. The main contribution of this work can be summarized by:

• Taxonomy of Learning Algorithms: We present a unifying view on reinforce-
ment learning, search, and forward model learning algorithms in the context of
the agent-environment interface.

• Decomposed Differential Forward Model: We review the definitions of previ-
ously proposed model building heuristics and their generalization in form of the
decomposed forward model. As a result, we propose the decomposed differential
forward model which will be used throughout this study.

• Risk Awareness: We propose several methods for measuring the agent’s con-
fidence in the learned forward model’s predictions. Furthermore, we propose
several optimization goals to balance exploration and exploitation during the
agent’s training process.

The remainder of this chapter is structured as follows: In Section 2, we com-
pare the concepts of reinforcement learning, search-based algorithms, and forward
model learning for decision-making. The following sections (Section 3 and Sec-
tion 4) focuse on the introduction of forward model learning and types of forward
model representations. Section 5 exemplarily shows the usage of Gaussian process
regression and ensemble regression models such as a random forest regression. For
both, we propose methods for incorporating the variance of made predictions in the
agent’s decision-making process (Section 5.2). We evaluate proposed methods based
on their resulting performance in three simple motion control tasks in Section 6.
For a more detailed analysis, we compare the impact of proposed measures on the
agent’s training process in Section 7. We conclude our results in Section 8 and discuss
opportunities for further studies.



Balancing Exploration And Exploitation in Forward Model Learning 3

2 Taxonomy of Learning Algorithms

The agent-environment interface represents a general description of a learning sce-
nario. Here, the agent is in continuous interaction with an environment. Each of the
agent’s executed actions has the potential to update the state of the environment. In
return, the agent can be offered a numerical reward that is typically associated with
the given task.

In reinforcement learning, the agent focuses on picking actions to maximize its
expected reward over time. Given observations of all its previous interactions, the
agent tries to estimate the expected value of state-action pairs. Algorithms such as
Temporal Difference Learning (TDL) [32], Q-learning [35], and the Monte Carlo
(MC) method [30], update the expected value after a reward signal has been observed
or after the result of an episode has been observed respectively. These techniques are
called model-free since they do not try to build a model of their environment.

In contrast to these simpler reinforcement learning algorithms, which are storing
the value of each state-action pair, methods in deep reinforcement learning use
a neural network to approximate the value based on the input, thus drastically
decreasing the storage used for the model [37]. While deep reinforcement learning
algorithms have resulted in an impressive performance in the context of many game-
related benchmarks, the number of required training examples to fit all the network’s
parameters is often high and thus require much training time.

Simulation-based search algorithms, such as minimax [23] or Monte Carlo tree
search (MCTS) [5], utilize the environment’s forward model to simulate the outcome
of planned action sequences. Each action sequence represents a candidate solution.
Its simulation is called a rollout and the result of such a simulation can be used to
estimate the value of actions in the simulated sequence. In contrast to reinforcement
learning algorithms, simulation-based search algorithms estimate the value of an
action at run-time. Therefore, these algorithms require knowledge of the current
state and the game’s model, and return the action with the highest expected value
regarding the current state. In return, they can be applied without prior training. Due
to their capability of being applied without training, search algorithms such as MCTS
and Open Loop Search [26] have performed well in general game-playing tasks [27].

Dynamic programming algorithms [21] require knowledge of the environment’s
forward model to calculate the true value of any state-action pairs. This optimization
process can yield a perfect policy for small state and action spaces. However, the
high breadth or depth of the search tree often renders this method infeasible.

Next to traditional search schemes, the rolling horizon evolutionary algorithm
(RHEA) [15, 16], uses mutation and crossover to optimize the agent’s action sequence.
A heuristic value of simulated action sequences can be used as a fitness measure
to guide evolutionary optimization. The design of such a heuristic can drastically
impact, the resulting behavior.

In the following, we compare the reviewed methods based on their knowledge
of the environment. Given the agent’s action and the current state, the agent will
observe the next state and a reward. Both updates can be encoded in a separate model,
namely the forward model producing the next state and the reward model which in



4 Alexander Dockhorn and Rudolf Kruse

turn provides the agent with a reward. However, since the accumulated reward (also
known as return) is much more useful for the agent’s action-selection process, the
following comparison will use the agent’s knowledge of the return to measure the
value of a state-action pair. Therefore, we focus on the agent’s knowledge of two
of the environment’s components, (1) the environment’s forward model, and (2) the
value of the environment’s states and actions.

Considering the agent’s knowledge of the return, reinforcement learning and
simulation-based search methods represent two extremes. The eager learning process
of reinforcement learning methods results in a return model. While TDL and the MC
method do this without needing knowledge about the forward model, the computa-
tions done in dynamic programming need the forward model for its iterative update
routine. Deep reinforcement learning replaces the need for storing the expected
return for every state by learning a network that approximates the return function.
The reduction in complexity can arguably be achieved through an understanding of
the game’s state-space.

In contrast, simulation-based search methods do not need to store the expected
return of each state, since they approximate at run-time using the forward model. The
rolling horizon evolutionary algorithm seems to be a slight exception to this since it
is also making use of a heuristic function, which approximates the value of a state.
This heuristic function is being used to rate a rollout’s outcome and, in the best case,
approximates the expected return.

The class of forward model learning algorithms represents a new approach that
enables the application of search algorithms in case the environment’s forward model
is unknown to the agent. Therefore, the agent builds a model to predict upcoming
states based on made observation during previous interactions. At the time, the agent
can also learn to predict the reward of the environment or approximate the value of a
state-action pair.

This process can be compared to recent experiments on world modeling [18] and
imagination-based deep reinforcement learning [36]. In these, the agent uses a deep
or recurrent neural network structure that handles the selection of the agent’s actions
according to predicted future states. Agents using these model-based deep reinforce-
ment learning approaches have shown to be capable of playing games based on
their visual state representation [20]. Similarly, they achieved improved performance
in several visual control tasks in comparison to model-free reinforcement learning
agents [19]. However, the sheer number of parameters to be tuned and the eager
learning of the state’s value function results in the agent requiring lots of training
data, e.g. 108 training steps for learning to play the game Sokoban [36]. The amount
of required iterations makes this process infeasible in case the model’s training time
is limited.

In contrast, a prediction-based search can be implemented which determines an
action’s value according to simulations of the trained forward model. Furthermore,
reductions of the feasible model space could be achieved by assuming independencies
among observed sensor values. Figure 1 presents a summary of the discussed methods,
based on the two dimensions: knowledge of expected return and knowledge of the
game model.



Balancing Exploration And Exploitation in Forward Model Learning 5

Knowledge of Expected Return

K
no

w
le

dg
e

of
G

am
e

M
od

el

no return data,
no game model

expected return of
every state

game model
known

approximate
return function

ap
pr

ox
im

at
e

ga
m

e
m

od
el

Simulation-Based
Search Methods
(MCTS, MIN-MAX)

Reinforcement Learning
(TD, MC)

Dynamic
ProgrammingRHEA

Heuristics

Deep Reinforcement

Learning

Forward Model

Learning

Fig. 1 Comparison of general game-playing and -learning techniques based on the agent’s knowl-
edge of the return function and the game’s environment model [8].

3 Forward Model Learning

In this section, we will take a closer look at the forward model learning process. First,
we will define how the environment’s model can be represented. The next section
will cover the forward model’s representation.

First of all, we assume that the environment model can be represented as a
stochastic process that maps the sequence of previous actions a ∈ A and states s ∈ S
to a probability of observing the next state and its associated reward r ∈ R.

p(st ,rt | st−1,at−1, . . . ,s1,a1) (1)

We consider each state st ∈ S ⊆ Rn to be a vector of real-valued observations st =
(s1

t ,s
2
i , . . . ,s

n
t ),s

i
t ∈ R at time t. The same notation applies to the set of available

actions and the action space: at ∈ A⊆ Rn.
For simplicity, we will assume single-value action spaces and an environment

model that satisfies the Markov property. Therefore, the environment’s response is
independent of all but the latest interaction and can be simplified to:

p(st ,rt |st−1,at−1) (2)



6 Alexander Dockhorn and Rudolf Kruse

Up to now, the environment’s response includes two components, the state and
the reward. We further split the environment model into a state transition model and
a reward model, both fulfilling the Markov property:

State Transition Model: p f m(st | st−1,at−1)

Reward Model: pr(rt | st−1,at−1)

During forward model learning, the agent will learn to approximate the state
transition model based on observations of previous interactions. Given these obser-
vations, the agent can construct a training set and use supervised learning methods
to create an approximation of the original model. Depending on the structure of the
state-space a classification (discrete and nominal state-spaces) or a regression model
(real-valued state spaces) can be used to predict upcoming states.

In recent works of model-based reinforcement learning, the state transition model
has been represented by deep neural networks. The World Models agent learns a
latent vector representation using LSTMs [18]. This allows the agent to keep track
of previous events and further condense its action policy. Following up on this
idea, the imagination-based I2A agent [28] adds a rollout phase for improving the
agent’s estimates of an action’s expected return for long-time horizons. The Dreamer
agent [19] has shown that latent state models can learn motion control behaviors of
varying complexity based on high-dimensional sensory inputs.

In contrast to model-based reinforcement learning, forward model learning agents
do not model the return of an action (accumulated reward) but estimate an action’s
value based on its simulated outcome. State-of-the-art planners such as Monte Carlo
Tree Search [5] and Rolling Horizon Algorithms [15] have recently shown applica-
tions in game AI [15, 31] and motion control [6]. Since the accuracy of the planning
process is dependent on the accuracy of the agent’s prediction, the agent’s goal is to
improve the forward model’s accuracy and not the agent’s policy.

4 Forward Model Representation

Learning a model of the environment has been actively studied in model-based
reinforcement learning. While many approaches rely on the generality of deep neural
networks, they have not shown to be very sample efficient. Therefore, the model
requires many iterations to be trained until a reliable prediction of the upcoming
state can be made and the search-methods advantage to work without much training
time is lost. Thus, finding a suitable state representation can drastically reduce the
required training time as well as improve the model’s final prediction accuracy.

Instead of predicting the environment’s next state using a single model, the
environment’s response can often be split into multiple independent components.
In return, we can decompose the forward model into independent sub-models. The
reduced complexity of a sub-model’s output space can result in a simpler learning task,
hence, reducing the number of required model parameters and training examples.



Balancing Exploration And Exploitation in Forward Model Learning 7

4.1 Model Building Heuristics

Forward model decomposition has been shown to increase the sampling efficiency
and resulting model performance in numerous applications. An example of a model
decomposition heuristics is the local transition function that is used in local forward
models ([8]). Local forward models work similar to convolution neural networks, and
predict the future state based on independent predictions of each cell, whereas the
future state of each cell is predicted based on its current state and the state of its neigh-
bors. Local forward models have been successfully applied to the game of life ([22])
and Sokoban ([13]) as well as several games of the GVGAI environment ([1, 8]).

In ([14]), the authors have shown that knowledge of the environment’s state
representation can be used to create an object-based decomposition. An extension
of this work has been presented in ([11]), in which the authors proposed the use of
stochastic independence tests to find a valid decomposition of the forward model
without requiring background knowledge of the environment’s state representation.

The local and object-based forward model assumes independency among the input
and output variables of the forward model. Such dependencies among observable
sensor variables may exist in motion-control tasks, but the underlying structure may
be unknown. As a result, we have previously proposed the decomposed differential
forward model [12]. For the decomposition, we assume that the next state’s sensor
values are dependent on the previous state (and possibly its predecessors), but inde-
pendent of each other. This results in a decomposability of the state transition model
into several sub-models, whereas each sub-model predicts the updated sensor value:

i-th Component Model: fmi(st−1,at−1) 7→ si, t

The decomposed forward model can further be used to predict the future state
by separately predicting the future state of each observable sensor-value (indicated
by ŝi, t ) and aggregating the result of each sub-model:

fm(st−1, at−1)

=(fm1(st−1, at−1), . . . , fmn(st−1, at−1))

=(ŝ1, t , . . . , ŝn, t)

(3)

Alternatively, we can predict the changes of a sensor value:

i-th Differential Model: fm∆ i(st−1, at−1) 7→ si, t−1− si, t

Aggregating the predictions of all sensor values and the agent’s reward, the agent
can predict the outcome of an action. Similarly, a hierarchical structure can be built,
in which the environment is first split into several units and the future state values of
each unit are predicted independently [7, 9].

Since the result is another state observation, the agent can predict whole action
sequences by repeatably applying the learned forward model. Using this, actions
can be determined using forward planning methods or a policy can be learned using
reinforcement learning on the simulated environment [25].



8 Alexander Dockhorn and Rudolf Kruse

For motion control, the underlying modeling task is considered a supervised
learning problem in which a regressor is trained to predict upcoming states. Several
attributes of the model need to be considered upon model selection:

• model accuracy: the trained model needs to be accurate for previous observations
and future time steps. This is especially relevant for consecutive predictions since
the error will propagate over multiple predictions.

• model speed: the trained model needs to be applied very often during the search
process. Studies on MCTS have shown that increasing the number or the quality
of rollouts can improve the agent’s performance [10].

• model size: the model’s size (in terms of parameter count) can impact the training
time and the number of observations required for optimizing the model’s param-
eters. While regression models such as linear regression are the most simple to
train, their applicability is quite limited. In contrast, deep neural networks are
flexible but can require large amounts of training data.

• model interpretability and reliability: a characteristic that is often neglected in
deep learning approaches is the model’s interpretability. While deep reinforce-
ment learning has shown great performance, the black-box nature of deep neural
networks may not allow human interpretation of its results. This complicates to
measure the reliability or risk of a trained model. In contrast, planning based ap-
proaches can transparently summarize the search path and its predicted states. This
can be especially important in risk critical applications and allow the computation
of confidence bounds.

5 Improving the Confidence of a Forward Model

The forward model allows us to anticipate the result of an agent’s actions. However,
the prediction may be inaccurate and therefore the predicted result of an action
sequence may be desirable but unlikely. In the context of a simulation-based search
agent which is using a learned forward model, we would like to incorporate the
confidence in the model’s prediction in the agent’s decision-making process as well
as improving it throughout the training process.

5.1 Measuring the Learned Model’s Confidence

The following analysis is based on the Gaussian Process regression model [29]. In
contrast to many other regression models, it does not return a single predicted value,
but a full predictive distribution. Given this distribution, we can estimate the mean
value and the distribution’s variance to be used by the agent. Other regression models
may not provide the same information but it may be inferred given their output.

In the case of ensemble regression models, we can measure the model’s confidence
by the agreement of all regression models included in the ensemble. Hence, the



Balancing Exploration And Exploitation in Forward Model Learning 9

ensemble does not need to consist of probabilistic regression models but may be
built using any type of regression model. A common representative is the random
forest regression [3], which consists of multiple decision tree regression models each
trained on a different slice of the training data set. The ensembles response will
be the mean of predicted values. Similarly, we can measure the variance of made
predictions to estimate the confidence of the ensemble model.

5.2 Learning Goals Based on the Model’s Confidence

In previous studies, the training process was implemented as a random explo-
ration [13, 12]. As a result, we have observed that the forward model’s accuracy
quickly degrades in situations that have not previously been observed. This is due
to the missing diversity in the training set. Therefore, we want to actively approach
states and actions that the forward model cannot accurately predict to improve its
generality.

Given the task of predicting action sequences of length m, we will use a decom-
posed forward model to predict the upcoming states after each action of the action
sequence. Starting with a state st = (s1, t , . . . ,sn, t) we will predict the future states
st+1 to st+m. Similarly, we will learn to predict the rewards rt+1 to rt+n the agent
expects to receive, which can be modeled as an additional output of the environment’s
state observation. For simplicity, we will use s and r to denote the true state and
reward, and ŝ and r̂ for the predicted state and reward respectively. The following
heuristics will be used to guide the agent’s action selection during training and
evaluation.

First, we focus on improving the agent’s performance by selecting actions that
are predicted to be promising by the forward model. Naively, we can assume that we
only need to take the sum of predicted rewards of an action sequence into account.
Hence, the predicted discounted return Q of the agent’s planned action sequence
results in the weighted sum of rewards:

Q =
m

∑
i=1

γ
ir̂t+i (4)

for which γ ∈ (0,1] balances between favoring long-term and short-term rewards.
As we pointed out before, the regression model might be inaccurate in its predic-

tion. Next, we want to incorporate information on the predicted reward distribution
to make the agent aware of such inaccuracies. Hence, during training, we want to
actively approach actions the current model cannot confidently predict. To motivate
this behavior, we let the agent actively approach situations with a high variance. An
optimistic return heuristic can be formulated as:

Qopt =
m

∑
i=1

γ
ir̂t+i +

m

∑
i=1

σ
2
r̂,t+i =

m

∑
i=1

[
γ

ir̂t+i +σ
2
r̂,t+i
]

(5)



10 Alexander Dockhorn and Rudolf Kruse

During the evaluation, we want to avoid such situations to minimize the agent’s
risk. Taking a pessimistic (Qpess) approach, we reduce the expected reward by the
variance of its predictions.

Qpess =
m

∑
i=1

γ
ir̂t+i−

m

∑
i=1

σ
2
r̂,t+i =

m

∑
i=1

[
γ

ir̂t+i−σ
2
r̂,t+i
]

(6)

Thus we can assure that two action sequences with similar outcome but varying
confidence in its predictions can be differentiated.

So far, both heuristics have focused on the predicted reward. To assure that the
model will also become more confident in its prediction of future states, we introduce
an exploration goal. For this purpose, we will use the information on the model’s
confidence in predicting upcoming state variables to guide the agent into states that
cannot be accurately predicted yet. Once again, we measure the model’s confidence
by taking the variance of the prediction into account. Since the predicted states are
dependent on each other, we would require additional simulations to identify the
reward at each time-step of the predicted action sequence. This process would be
infeasible for real-time applications because the number of forward model evaluations
is limited. Instead, we will use the cumulative standard deviations to approximate
the uncertainty of a whole action sequence:

m

∑
i=1

i

∑
j=1

σ
2
ŝt+ j

Hereby, we punish action sequences in which the first actions cannot be accurately
predicted more than action sequences in which the results of later actions are unsure.
We further incorporate the defined optimization targets into a single heuristic for
action-selection.

Qconf =
m

∑
i=1

[
γ

ir̂t+i +ασ
2
r̂ +β

i

∑
j=1

σ
2
ŝt+ j︸ ︷︷ ︸

cumulative
state variance

]
(7)

for which α balances the agent’s risk awareness considering the reward predictions
and β balances the agent’s drive to explore unknown states. This heuristic has been
motivated by Bienaymé’s identity but since the independency of variables cannot be
assured here, we included α and β to configure the heuristic according to the user’s
requirements. Setting α > 0 sets the agent to actively approach states in which the
predicted reward is unsure, whereas values below 0 let the agent avoid those states.
For β > 0 the agent is encouraged to explore action sequences the model cannot
confidently predict and once again lets the avoid those states for values below 0. For
training in a safe environment, we recommend setting both values to be positive,
while during testing we recommend choosing negative values to let the agent explore
its environment. Those values may be adapted throughout the training depending on
the confidence of the model and the agent’s success.



Balancing Exploration And Exploitation in Forward Model Learning 11

(a) Cart-Pole (b) Pendulum (c) Acrobot

Fig. 2 Three motion-control environments and their representation in the OpenAI Gym framework.

6 Evaluating the Agent’s Performance

Our evaluation is split into two parts. First, we analyze the agent’s ability to learn
a forward model and using it for guiding its action-selection in three of the most
common motion control tasks. During this experiment, we will compare the agent
with reinforcement learning-based approaches. To evaluate the proposed measures,
we designed a second experiment series, to test their effects on the agent’s training
and its resulting performance in the aforementioned motion control tasks. The source-
code to our experiments and our results are available for download1.

6.1 Motion Control Environments

The cart-pole problem [2] requires the agent to balance a pole by moving a cart back
and forth. The pole is attached to a cart by an un-actuated joint, which moves along a
frictionless track. The agent can apply a discrete force of +1 or −1 to the cart. The
pole is starting in an upright position and needs to be kept in the range of [−15,+15]
degree from vertical. If the pole is falling below that threshold or the cart moves
more than 2.4 units from the center, the episode ends. A maximal reward is achieved
after balancing the pole for a maximum of 500 time-steps.

The pendulum problem is a classic problem in the control literature. In this version
of the problem, the pendulum starts in a random position, and the goal is to swing it
up so it stays upright. The reward penalizes deviations from the equilibrium and the
magnitude of the agent’s applied actions.

The acrobot problem requires the agent to swing up a pendulum with two links.
Similar to the pendulum problem, the agent can apply a discrete rotational force
to the joint of the first link. Initially, both links hang downwards, and the goal is
to swing the end of the lower link up to a given height indicated by the target line.

1 https://github.com/ADockhorn/Balancing-Exploration-And-Exploitation-in-Forward-Model-
Learning



12 Alexander Dockhorn and Rudolf Kruse

0 20000 40000 60000 80000 100000
training steps

0

100

200

300

400

av
er

ag
e 

ep
is

od
e 

re
tu

rn

DDFM DQN SARSA CEM

(a) Cart-Pole

0 20000 40000 60000 80000 100000
training steps

1000

800

600

400

200

av
er

ag
e 

ep
is

od
e 

re
tu

rn

DDFM DQN SARSA CEM

(b) Acrobot

0 20000 40000 60000 80000 100000
training steps

1600

1400

1200

1000

800

600

400

200
av

er
ag

e 
ep

is
od

e 
re

tu
rn

DDFM NAF

(c) Pendulum

Fig. 3 Training comparison of forward model learning and deep reinforcement learning agents.
Graphs are showing the average episode return per training step smoothed using the local regression
(loess). Each agent has been trained 10 times for 100000 steps each.

The reward is the height of the tip of the pendulum. The implementation of these
environments is provided by the Open AI Gym framework [4].

6.2 Experiment Setup - Agent Performance

The proposed decomposed differential forward model (DDFM) will be compared
to several popular reinforcement learning algorithms. In case of a discrete action
space (Cart-Pole and Acrobot) we chose to use Sarsa [33], DQN [24], and CEM [34].
Whereas for the Pendulum environment, which uses a continuous action space, we
compared our approach with the NAF algorithm [17]. The hyper-parameters of each
algorithm were tuned by a simple grid-search.

For each environment, we continuously train our agents for a total of 100000
time-steps. During training, we record the agents’ reward per episode. We repeat the
training process 10 times to get more stable results. The final performance of each
model is measured by the average return of the last 10 training episodes.



Balancing Exploration And Exploitation in Forward Model Learning 13

6.3 Results

Figure 3 shows the agents’ performance in each of the three training environments.
The results indicate that simple problems, such as the Cart Pole and the Pendulum
environment, can efficiently be solved after just a few training steps. In these, the
agent outperforms deep-reinforcement learning approaches in terms of sampling
efficiency. Nevertheless, the proposed model performs worse in the Acrobot envi-
ronment, since solving the task requires to plan longer action sequences. Due to
the simplicity of all three environments, the learning curves are steep and converge
quickly. The convergence level seems to be very much dependent on the agent’s
parameters, for which the planning horizon and the regression model have shown to
have the most impact.

6.4 Discussion

Based on this evaluation and our preceding parameter optimization we have identified
two problems of current forward model learning techniques.

Planning horizon dilemma: A common problem of planning algorithms is the
choice of the planning horizon. While increasing the search can improve the accuracy
of a planning agent’s reward estimation, it also exponentially increases the number
of possible states to be analyzed. In the case of forward model learning agents, the
planning horizon is further restricted by the accuracy of the learned forward model.
In contrast to using the true environment dynamics, predictions of a learned forward
model become less accurate with increasing search depth. For choosing a suitable
rollout length for a trained model we analyzed the model’s prediction error over the
length of multiple predicted action sequences. This can hint at a suitable parameter
combination but has shown to be too costly to repeat throughout the model learning
process. Dynamic measurements of the model’s confidence in its prediction might
help in improving the agent’s performance. Similarly, algorithms like MCTS that do
not use a fixed planning horizon may be beneficial.

Exploration vs. Exploitation: During training, the agent needs to optimize the
learned model as well as possible but also needs to focus on beneficial actions. There-
fore, the agent needs to focus on actions that maximize our chances of succeeding,
while adding new data to the forward model for improving its accuracy. In the present
study, we let the agent solely decide based on its predicted reward. However, it
may show beneficial to include exploring actions during training. This may not just
improve the model’s accuracy, but in the long run, also make the agent more robust
to unlikely or new situations.



14 Alexander Dockhorn and Rudolf Kruse

random Q Qopt Qconf

Training Heuristic

0

100

200

300

400

500

pe
rfo

rm
an

ce

Test Heuristic
random
Q
Qpess

Qconf

(a) Cart-Pole

Fig. 4 Testing all combinations of train and test functions. Training has been done for 500 time-steps
of the environment. For each trained model we performed 10 evaluations and measured the average
length the agent kept the pole balanced. The experiment has been repeated 10 times to average the
results of multiple training runs.

7 Evaluating the Effects of Confidence-based Sampling

7.1 Experiment Setup - Training Efficiency

These observed problems of the previous evaluation have motivated the proposal
of confidence-based sampling and action-selection during the agent’s training and
evaluation. To compare the effects of proposed methods we repeat the agent’s training
process using a (1) a random-exploration, (2) the undiscounted return (Equation 4,
γ = 1), (3) the optimistic return (Equation 5), and (4) the confidence-based return
(Equation 7) with weights α = β = 1. Each training function is used to train 10
models for 500 time-steps each. During training, we update the agent’s forward
model every 10 time-steps. The forward model will be represented as a differential
decomposed forward model using Gaussian process regression with a radial basis
function kernel.

After 500 time-steps of training, we store the agent’s forward model and keep
it constant for the remaining evaluation. Furthermore, we test the learned model’s
for 10 episodes using (1) a random agent, (2) the discounted return (Equation 4,
γ = 1), (3) the pessimistic return (Equation 5), and (4) the confidence-based return
(Equation 7) with weights α = β =−1. For a reliable action-selection, we simulate
all action-sequences of length x and select the first action of the best-rated action
sequence. In case multiple action sequences are predicted to yield the same value,
we choose a random action sequence among the best action sequences.



Balancing Exploration And Exploitation in Forward Model Learning 15

1 2 3 4 5 6 7 8 9 10
rollout length

1

512

1024

ac
tio

n 
se

qu
en

ce

Q

1 2 3 4 5 6 7 8 9 10
rollout length

1

512

1024

ac
tio

n 
se

qu
en

ce

reward variance

1 2 3 4 5 6 7 8 9 10
rollout length

1

512

1024

ac
tio

n 
se

qu
en

ce

state variance

0.0

0.5

1.0

1.5

2.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.01

0.02

0.03

0.04

0.05

Fig. 5 Simulated action sequences an their predicted value given the proposed sampling methods.

7.2 Results

Figure 4 shows the results for each combination of train and test action-selection
methods on the cart-pole environment. The box-plots show that the best performance
is achieved by using the confidence-based return during the agent’s training and
evaluation. Even if the agent has been trained using random interactions, the agent
can improve its performance using any of the proposed functions for action-selection.

The latter is especially interesting since it suggests that confidence-based sampling
can benefit the action-selection of all existing applications of forward model learning
without retraining the model. It allows the agent to easily balance between exploration
and exploitation of the state-space by making it aware of action sequences that
cannot be correctly predicted. This comes at the cost of estimating the prediction
variance. Depending on the used regression method, this might result in just a small
overhead, as we have demonstrated for ensemble regression models. Nevertheless,
other regression models may require more work.

In our evaluation, we have only simulated action sequences of equal length. The
application of confidence-based measures may allow using adaptive planning horizon
by stopping the simulation as soon as the cumulative state confidence falls below
a set threshold. This can be especially interesting for tree-search-based algorithms,
such as MCTS, to cut off the current rollout in case the forward model cannot provide
accurate predictions anymore.

To get a better picture of the effects of confidence-based action selection, we have
devised a final test. In this experiment we have used a single state of the cart-pole
environment, a trained model, and all simulated action sequences of length 5. We
further used the (1) undiscounted return (Equation 4, γ = 1), (2) the pessimistic
return (Equation 5), and (3) the confidence-based return (Equation 7) with weights
α = β =−1 to evaluate all the action sequences.

Figure 5 show the respective values for all steps of all simulated action sequences.
Looking at the values provided by the return shows that the agent can hardly differ-
entiate action sequences based on their value. This is caused by the uniform reward
of the environment, which always awards the agent 1 point in case the pole did not
tip over yet. The model easily learns this reward scheme and correctly represents the
reward distribution. Since the length of simulated action-sequences does in many



16 Alexander Dockhorn and Rudolf Kruse

cases not suffice to let the pole fall down, the reward is often not a sufficient signal to
choose actions for minimizing the agent’s risk. Based on the value of the pessimistic
return, we see that the time point at which the reward stops is unsure, but as soon
as the forward model has made a decision, the variance in its prediction returns to
0. Finally, the confidence-based return allows differentiating most action sequences
based on their cumulative state variance. Returned values provide the agent with the
most information on the forward model’s prediction. Especially action sequences
which the model does not predict with high confidence can easily be avoided.

8 Conclusion and Future Work

In this work, we have analyzed forward model learning algorithms and how they fit
into the big picture of algorithms for computational intelligence in games and motion
control. Based on our recent work on forward model learning, we have proposed
the decomposed differential forward model. In its most general form, this model
assumes that the environment’s observable sensor values are independent of each
other. This restriction can be loosened in case enough training data is available, such
that the dependency structure can be inferred.

The model has further been tested in three classic motion control environments.
Results have been compared to deep-reinforcement learning approaches. Our first
experiments have shown that the performance is largely dependent on the accuracy
of the learned forward model and its feasible prediction horizon. To further improve
upon this, we have proposed several confidence-based sampling measures to make
the agent aware of the accuracy of its predictions to judge the risk of an action
sequence. A second experiment series has shown, that proposed sampling measures
can improve the efficiency of the training process. Furthermore, they are capable
of improving the agent’s performance during evaluation even in case the model has
been trained using random sampling.

Even if reinforcement-learning has shown to be able to solve many motion-control
tasks, these methods still require large amounts of training data. Since the proposed
planning based approaches have shown great learning performance during the first
steps of acting in a new environment, the next step will be to combine these two
algorithmic schemes in a single agent. Such an agent may dynamically choose to
either trust the reinforcement learner’s value model or to rely on a learned forward
model for using a planning-based approach. Similarly, the planner could benefit from
the reinforcement-learner’s policy during the search phase. Since curiosity-driven
learning and other intrinsic reward schemes have already shown promising results for
improving reinforcement-learning agents, similar improvements could be achieved
when being applied to forward model learning agents.



References

[1] Apeldoorn, D., Dockhorn, A.: Exception-Tolerant Hierarchical Knowledge
Bases for Forward Model Learning. IEEE Transactions on Games pp. 1–14
(2020). DOI 10.1109/TG.2020.3008002. URL https://ieeexplore.
ieee.org/document/9136897/

[2] Barto, A.G., Sutton, R.S., Anderson, C.W.: Neuronlike Adaptive Elements That
Can Solve Difficult Learning Control Problems. IEEE Transactions on Systems,
Man and Cybernetics SMC-13(5), 834–846 (1983). DOI 10.1109/TSMC.1983.
6313077

[3] Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001). DOI
10.1023/a:1010933404324

[4] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W.: Openai gym (2016)

[5] Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfsha-
gen, P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A Survey of Monte
Carlo Tree Search Methods. IEEE Transactions on Computational Intelligence
and AI in Games 4(1), 1–43 (2012). DOI 10.1109/TCIAIG.2012.2186810.
URL http://ieeexplore.ieee.org/document/6145622/

[6] Clary, P., Morais, P., Fern, A., Hurst, J.: Monte-Carlo planning for agile legged
locomotion. Proceedings International Conference on Automated Planning and
Scheduling, ICAPS 2018-June(Icaps), 446–450 (2018)

[7] Dearden, A., Demiris, Y.: Learning forward models for robots. IJCAI Interna-
tional Joint Conference on Artificial Intelligence pp. 1440–1445 (2005)

[8] Dockhorn, A.: Prediction-based search for autonomous game-playing. Ph.D.
thesis, Otto-von-Guericke-Universität Magdeburg, Fakultät für Informatik
(2020). DOI 10.25673/34014. URL https://opendata.uni-halle.
de//handle/1981185920/34209

[9] Dockhorn, A., Apeldoorn, D.: Forward Model Approximation for General
Video Game Learning. In: Proceedings of the 2018 IEEE Conference on
Computational Intelligence and Games (CIG’18), pp. 425–432. IEEE (2018).
DOI 10.1109/CIG.2018.8490411. URL https://ieeexplore.ieee.
org/document/8490411/

17

https://ieeexplore.ieee.org/document/9136897/
https://ieeexplore.ieee.org/document/9136897/
http://ieeexplore.ieee.org/document/6145622/
https://opendata.uni-halle.de//handle/1981185920/34209
https://opendata.uni-halle.de//handle/1981185920/34209
https://ieeexplore.ieee.org/document/8490411/
https://ieeexplore.ieee.org/document/8490411/


18 Alexander Dockhorn and Rudolf Kruse

[10] Dockhorn, A., Doell, C., Hewelt, M., Kruse, R.: A decision heuristic for
Monte Carlo tree search doppelkopf agents. In: 2017 IEEE Symposium
Series on Computational Intelligence (SSCI), pp. 1–8. IEEE (2017). DOI
10.1109/SSCI.2017.8285181. URL http://ieeexplore.ieee.org/
document/8285181/

[11] Dockhorn, A., Kruse, R.: Detecting Sensor Dependencies for Building Comple-
mentary Model Ensembles. In: Proceedings of the 28. Workshop Computational
Intelligence, Dortmund, 29.-30. November 2018, pp. 217–234 (2018)

[12] Dockhorn, A., Kruse, R.: Forward Model Learning for Motion Control Tasks.
In: 2020 IEEE 10th International Conference on Intelligent Systems (IS), pp.
1–5. IEEE (2020). DOI 10.1109/IS48319.2020.9199978. URL https://
ieeexplore.ieee.org/document/9199978/

[13] Dockhorn, A., Lucas, S.M., Volz, V., Bravi, I., Gaina, R.D., Perez-Liebana,
D.: Learning Local Forward Models on Unforgiving Games. In: 2019 IEEE
Conference on Games (CoG), pp. 1–4. IEEE, London (2019). DOI 10.1109/CIG.
2019.8848044. URL https://ieeexplore.ieee.org/document/
8848044/

[14] Dockhorn, A., Tippelt, T., Kruse, R.: Model Decomposition for Forward Model
Approximation. In: 2018 IEEE Symposium Series on Computational Intelli-
gence (SSCI), pp. 1751–1757. IEEE (2018). DOI 10.1109/SSCI.2018.8628624.
URL https://ieeexplore.ieee.org/document/8628624/

[15] Gaina, R.D., Liu, J., Lucas, S.M., Pérez-Liébana, D.: Analysis of Vanilla
Rolling Horizon Evolution Parameters in General Video Game Playing. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10199
LNCS, pp. 418–434. Springer International Publishing (2017). DOI 10.
1007/978-3-319-55849-3_28. URL http://link.springer.com/10.
1007/978-3-319-55849-3_28

[16] Gaina, R.D., Lucas, S.M., Perez-Liebana, D.: Rolling horizon evolution en-
hancements in general video game playing. In: 2017 IEEE Conference on
Computational Intelligence and Games (CIG), pp. 88–95. IEEE (2017). DOI
10.1109/CIG.2017.8080420. URL http://ieeexplore.ieee.org/
document/8080420/

[17] Gu, S., Lillicrap, T., Sutskever, U., Levine, S.: Continuous deep q-learning with
model-based acceleration. 33rd International Conference on Machine Learning,
ICML 2016 6, 4135–4148 (2016)

[18] Ha, D., Schmidhuber, J.: Recurrent world models facilitate policy evolution. In:
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, R. Garnett
(eds.) Advances in Neural Information Processing Systems 31, pp. 2450–2462.
Curran Associates, Inc. (2018)

[19] Hafner, D., Lillicrap, T., Ba, J., Norouzi, M.: Dream to control: Learning
behaviors by latent imagination (2019). URL http://arxiv.org/abs/
1912.01603

[20] Henaff, M., Whitney, W.F., LeCun, Y.: Model-based planning with discrete and
continuous actions (2017)

http://ieeexplore.ieee.org/document/8285181/
http://ieeexplore.ieee.org/document/8285181/
https://ieeexplore.ieee.org/document/9199978/
https://ieeexplore.ieee.org/document/9199978/
https://ieeexplore.ieee.org/document/8848044/
https://ieeexplore.ieee.org/document/8848044/
https://ieeexplore.ieee.org/document/8628624/
http://link.springer.com/10.1007/978-3-319-55849-3_28
http://link.springer.com/10.1007/978-3-319-55849-3_28
http://ieeexplore.ieee.org/document/8080420/
http://ieeexplore.ieee.org/document/8080420/
http://arxiv.org/abs/1912.01603
http://arxiv.org/abs/1912.01603


Balancing Exploration And Exploitation in Forward Model Learning 19

[21] Howard, R., Collection, K.M.R., of Technology, M.I.: Dynamic Programming
and Markov Processes. Technology Press Research Monographs. Technology
Press of Massachusetts Institute of Technology (1960)

[22] Lucas, S.M., Dockhorn, A., Volz, V., Bamford, C., Gaina, R.D., Bravi, I., Perez-
Liebana, D., Mostaghim, S., Kruse, R.: A Local Approach to Forward Model
Learning: Results on the Game of Life Game. In: 2019 IEEE Conference on
Games (CoG), pp. 1–8. IEEE (2019). DOI 10.1109/CIG.2019.8848002

[23] Maschler, M., Solan, E., Zamir, S.: Game Theory. Cambridge University
Press, Cambridge (2013). DOI 10.1017/CBO9780511794216. URL http:
//ebooks.cambridge.org/ref/id/CBO9780511794216

[24] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.a., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie,
C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S.,
Hassabis, D.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015). DOI 10.1038/nature14236

[25] Nguyen-Tuong, D., Peters, J.: Model learning for robot control: a survey. Cog-
nitive Processing 12(4), 319–340 (2011). DOI 10.1007/s10339-011-0404-1.
URL https://doi.org/10.1007/s10339-011-0404-1

[26] Perez Liebana, D., Dieskau, J., Hunermund, M., Mostaghim, S., Lucas, S.:
Open Loop Search for General Video Game Playing. In: Proceedings of
the 2015 on Genetic and Evolutionary Computation Conference - GECCO
’15, pp. 337–344. ACM Press, New York, New York, USA (2015). DOI 10.
1145/2739480.2754811. URL http://dl.acm.org/citation.cfm?
doid=2739480.2754811

[27] Perez-Liebana, D., Lucas, S.M., Gaina, R.D., Togelius, J., Khalifa, A., Liu, J.:
General Video Game Artificial Intelligence, vol. 3. Morgan & Claypool Pub-
lishers (2019). https://gaigresearch.github.io/gvgaibook/

[28] Racanière, S., Weber, T., Reichert, D.P., Buesing, L., Guez, A., Rezende, D.,
Badia, A.P., Vinyals, O., Heess, N., Li, Y., Pascanu, R., Battaglia, P., Has-
sabis, D., Silver, D., Wierstra, D.: Imagination-augmented agents for deep
reinforcement learning. Advances in Neural Information Processing Systems
2017-Decem(Nips), 5691–5702 (2017)

[29] Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning
-. University Press Group Limited, New York (2006)

[30] Rubinstein, R.Y., Kroese, D.P.: Simulation and the Monte Carlo Method. John
Wiley & Sons, Inc. (2016). DOI 10.1002/9781118631980. URL https:
//doi.org/10.1002/9781118631980

[31] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche,
G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Diele-
man, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T.,
Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game
of Go with deep neural networks and tree search. Nature 529(7587), 484–
489 (2016). DOI 10.1038/nature16961. URL http://www.nature.com/
articles/nature16961

http://ebooks.cambridge.org/ref/id/CBO9780511794216
http://ebooks.cambridge.org/ref/id/CBO9780511794216
https://doi.org/10.1007/s10339-011-0404-1
http://dl.acm.org/citation.cfm?doid=2739480.2754811
http://dl.acm.org/citation.cfm?doid=2739480.2754811
https://gaigresearch.github.io/gvgaibook/
https://doi.org/10.1002/9781118631980
https://doi.org/10.1002/9781118631980
http://www.nature.com/articles/nature16961
http://www.nature.com/articles/nature16961


20 Alexander Dockhorn and Rudolf Kruse

[32] Sutton, R.S.: Learning to predict by the methods of temporal differences.
Machine Learning 3(1), 9–44 (1988). DOI 10.1007/BF00115009. URL
http://link.springer.com/10.1007/BF00115009

[33] Sutton, R.S., Barto, A.G.: Reinforcement Learning, 2 edn. The MIT Press,
Cambridge (2018)

[34] Szita, I., Lorincz, A.: Learning tetris using the noisy cross-entropy method.
Neural Computation 18(12), 2936–2941 (2006). DOI 10.1162/neco.2006.18.
12.2936

[35] Watkins, C.J.C.H., Dayan, P.: Q-learning. Machine Learning 8(3-4), 279–292
(1992). DOI 10.1007/bf00992698

[36] Weber, T., Racanière, S., Reichert, D.P., Buesing, L., Guez, A., Rezende, D.J.,
Badia, A.P., Vinyals, O., Heess, N., Li, Y., Pascanu, R., Battaglia, P., Silver,
D., Wierstra, D.: Imagination-Augmented Agents for Deep Reinforcement
Learning (2017). URL http://arxiv.org/abs/1707.06203

[37] Yannakakis, G.N., Togelius, J.: Artificial Intelligence and Games. Springer
International Publishing, Cham (2018). DOI 10.1007/978-3-319-63519-4.
URL http://gameaibook.org/book.pdf

http://link.springer.com/10.1007/BF00115009
http://arxiv.org/abs/1707.06203
http://gameaibook.org/book.pdf

	Balancing Exploration And Exploitationin Forward Model Learning
	Alexander Dockhorn and Rudolf Kruse
	Introduction
	Taxonomy of Learning Algorithms
	Forward Model Learning
	Forward Model Representation
	Model Building Heuristics

	Improving the Confidence of a Forward Model
	Measuring the Learned Model's Confidence
	Learning Goals Based on the Model's Confidence

	Evaluating the Agent's Performance
	Motion Control Environments
	Experiment Setup - Agent Performance
	Results
	Discussion

	Evaluating the Effects of Confidence-based Sampling
	Experiment Setup - Training Efficiency
	Results

	Conclusion and Future Work

	References


