STRATEGA - A General Strategy Games Framework

Alexander Dockhorn, Jorge Hurtado-Grueso, Dominik Jeurissen, Diego Perez-Liebana

AIIDE 2020 Workshop on AI for Strategy Games
Stratega – A General Strategy Games Framework

- A single framework for turn-based and real-time strategy games.
- Easy creation and configuration of games using YAML-files.
- Built for research on Statistical Forward Planning (SFP) agents.
Framework Overview
Built for Statistical Forward Planning Agents

• A framework for research on general strategy game-playing.
 • All games defined in our framework use a common interface!

• Each game offers access to a forward model.
 • The framework has been optimized to maximize the number of possible forward model calls.
 • Observed game-states can be freely manipulated by the agent.

• The framework is implemented in C++ to assure a high execution speed
 • Headless mode for running games with enhanced speed.
Configuration

General

- Games and Agents can be configured using YAML-files
- They can be used to:
 - quickly generate variances of a game
 - balance a game’s parameters
 - setup experiments

Tiles and Boards

Units and Actions

Forward Model
Tiles and Boards

- Users can define their own tiles.
- Each tile can have a variety of properties or tile effects.
- Maps are encoded as tile maps.
- They can be manually defined or automatically generated.

Tiles:
- Swamp:
 - Symbol: S
 - IsWalkable: true
- Mountain:
 - Symbol: M
 - IsWalkable: false
- Hole:
 - Symbol: H
 - IsWalkable: true

Board:
- GenerationType: Manual
- Layout:
 MMMMM
 MSSSM
 MSSHM
 MSSHM
 MSSSM
 MMMMM
Configuration

- Similarly to tiles, users can generate their own units.
- Some base-properties are required, e.g. health, movement range, line of sight range and attack damage.
- RTSUnits require some time related properties, e.g. movement speed.
- Introducing new actions requires adding respective code. Parameterized actions will be added soon.

Units:
- Warrior:
 - Health: 100
 - MovementRange: 3
 - LineOfSightRange: 4
 - AttackDamage: 20
 - Actions: [Attack, Move]
- Healer:
 - Health: 40
 - MovementRange: 5
 - LineOfSightRange: 4
 - HealAmount: 10
 - Actions: [Heal, Move]
Configuration

- The forward model includes the game’s rules.
- Choose among a set of win conditions or define your own.
- Implement unique effects and quickly change their parameters to create a unique game-mode.

Forward Model:
WinCondition: LastManStanding
Effects:
 - DamageAll:
 - Type: Damage
 - Trigger: EndOfTurn
 - Condition: None
 - Amount: 10
 - DeadlyHole:
 - Type: Death
 - Trigger: EnterTile
 - Condition: StandingOnTile
 - TargetTile: Hole

\[
\text{states } s_0, \ldots, s_t, \text{ actions } a_0, \ldots, a_t \quad \xrightarrow{\text{Forward Model}} \quad s_{t+1}
\]
\[
\text{Reward Function} \quad \xrightarrow{\text{Forward Model}} \quad r_{t+1}
\]
A variety of game-modes

Kings
• Each agent needs to defend its king and kill the opponent king.
• unique win-condition

Pushers
• Units cannot fight but push each other into holes to kill.
• unique abilities

Healers
• Units continuously lose health and need to be healed.
• unique events
Graphical User Interface (GUI)

- View and play games through our GUI
 - Human players can play both game-modes via mouse controls
- Show additional logging information at real-time
- Send game-states to the GUI to visualize a search-path for simplified debugging of SFP agents
Agents

• Each Agent runs in a separate thread.
 • Allows for computation during the opponent’s turn.

• A communicator object lets them observe the current game-state.

• Agents need to return actions to the communicator which will first be checked for validity and then applied by the forward model.

• A human controller interface is available to play against bots.
Agents

The framework includes many baseline agents and further agents will be added in future updates.

Basic Agents
- Rule-based Agents
- One Step Lookahead
- Breadth-First Search
- Depth-First Search
- Beam Search

Advanced Agents
- Monte Carlo Tree Search (MCTS)
- Rolling Horizon EA (RHEA)
- Portfolio Greedy Search
- Portfolio RHEA
Logging

Supporting Debugging and Evaluation

• game-related statistics are tracked automatically
• Agents can log additional information through a logging interface
Experiments

All agents have been tested in three game-modes.

• Rule-based agents dominated our experiments.

• Using portfolios increased the performance, but will require a more in-depth analysis.

• Adding an opponent model improved the performance of all search-based agents.
Experiments

<table>
<thead>
<tr>
<th></th>
<th>CombatAgent</th>
<th>OSLAAgent</th>
<th>BFSAgent</th>
<th>DFSAgent</th>
<th>BeamSearchAgent</th>
<th>RHEAAgent</th>
<th>PortfolioRHEAAgent</th>
<th>MCTSAgent</th>
</tr>
</thead>
<tbody>
<tr>
<td>RandomAgent</td>
<td>0.08</td>
<td>0.00</td>
<td>0.00</td>
<td>0.36</td>
<td>0.28</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>CombatAgent</td>
<td>0.92</td>
<td>0.58</td>
<td>0.90</td>
<td>0.94</td>
<td>0.94</td>
<td>0.10</td>
<td>0.14</td>
<td>0.35</td>
</tr>
<tr>
<td>OSLAAgent</td>
<td>0.38</td>
<td>0.42</td>
<td>0.14</td>
<td>0.34</td>
<td>0.80</td>
<td>0.14</td>
<td>0.04</td>
<td>0.26</td>
</tr>
<tr>
<td>BFSAgent</td>
<td>0.48</td>
<td>0.10</td>
<td>0.00</td>
<td>0.34</td>
<td>0.54</td>
<td>0.10</td>
<td>0.04</td>
<td>0.10</td>
</tr>
<tr>
<td>DFSAgent</td>
<td>0.26</td>
<td>0.06</td>
<td>0.00</td>
<td>0.00</td>
<td>0.28</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>PGSAgent</td>
<td>0.46</td>
<td>0.06</td>
<td>0.08</td>
<td>0.10</td>
<td>0.42</td>
<td>0.00</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>BeamSearchAgent</td>
<td>0.72</td>
<td>0.26</td>
<td>0.14</td>
<td>0.22</td>
<td>0.64</td>
<td>0.92</td>
<td>0.08</td>
<td>0.20</td>
</tr>
<tr>
<td>RHEAAgent</td>
<td>0.74</td>
<td>0.84</td>
<td>0.12</td>
<td>0.24</td>
<td>0.56</td>
<td>0.76</td>
<td>0.10</td>
<td>0.16</td>
</tr>
<tr>
<td>PortfolioRHEAAgent</td>
<td>0.86</td>
<td>0.82</td>
<td>0.46</td>
<td>0.60</td>
<td>0.72</td>
<td>0.96</td>
<td>0.45</td>
<td>0.10</td>
</tr>
<tr>
<td>MCTSAgent</td>
<td>0.45</td>
<td>0.45</td>
<td>0.00</td>
<td>0.00</td>
<td>0.35</td>
<td>0.51</td>
<td>0.02</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Real-Time Strategy Mode in Active Development
Opportunities and Future Work

• We work closely with industry partners to shape the future of our project.

• Future updates will increase the variety of possible game-mechanics.
 • tech trees, (de-)buffs, object pick-ups, inventories, economy management

• We plan to host competitions on general strategy game AI.
 • General Strategy Game-playing
 • Balancing
 • Map/Content Generation
Thank you for your attention!

This work is supported by UK EPSRC research grant EP/T008962/1.

Interested in testing the framework yourself? Download the Stratega framework on Github: https://github.com/GAIResearch/Stratega

by Alexander Dockhorn, Jorge Hurtado-Grueso, Dominik Jeurissen, Diego Perez-Liebana
Email: {a.dockhorn, diego.perez}@qmul.ac.uk