



# Prediction-based Search for Autonomous Game-Playing

**PhD Defense Presentation** 

#### **Alexander Dockhorn**

alexander.dockhorn@ovgu.de Otto-von-Guericke University of Magdeburg Faculty of Computer Science Institute for Intelligent Cooperating Systems





Computational Intelligence refers to the ability of a computer to learn a specific task from data or experimental observation.





Computational Intelligence refers to the ability of a computer to learn a specific task from data or experimental observation.

steering of self-driving cars and parking aids



<sup>[1]</sup> https://commons.wikimedia.org/wiki/File:Tesla\_Autopilot\_Engaged\_in\_Model\_X.jpg





Computational Intelligence refers to the ability of a computer to learn a specific task from data or experimental observation.

- steering of self-driving cars and parking aids
- automating a production pipeline





[1] https://commons.wikimedia.org/wiki/File:Tesla\_Autopilot\_Engaged\_in\_Model\_X.jpg

[2] https://commons.wikimedia.org/wiki/File:Industrieroboter.jpg





Computational Intelligence refers to the ability of a computer to learn a specific task from data or experimental observation.

- steering of self-driving cars and parking aids
- automating a production pipeline

#### **Problems:**

- real tasks are hard to setup and evaluate
- failure of the algorithm has considerable cost (e.g. car crash)





Computational Intelligence refers to the ability of a computer to learn a specific task from data or experimental observation.

- steering of self-driving cars and parking aids
- automating a production pipeline

#### **Problems:**

- real tasks are hard to setup and evaluate
- failure of the algorithm has considerable cost (e.g. car crash)

Games can be simulations of real world tasks

- quantifiable goal, varying difficulty, and large data sets
- digital games are fully accessible to computers













heuristic solutions, planning agents and reinforcement learning agents













these were achieved using reinforcement learning algorithms and months of training













A general framework for studying games which consists of the elements:

• Agent: the learner and decision-maker







- Agent: the learner and decision-maker
- Environment: anything the agent interacts with, e.g. a game







- Agent: the learner and decision-maker
- Environment: anything the agent interacts with, e.g. a game
- Actions: Agent and environment interact continuously interact with each other.
  - the agent selects an action
  - the environment responds to those actions







- Agent: the learner and decision-maker
- Environment: anything the agent interacts with, e.g. a game
- Actions: Agent and environment interact continuously interact with each other.
  - the agent selects an action
  - the environment responds to those actions
- Reward: numerical values provided that the agent tries to maximize over time.





#### **Components of a Game**







#### Components of a Game



State  $S_t \in S$  can be perceived through multiple sensors  $(S_t^{(1)}, S_t^{(2)}, \dots, S_t^{(n)})$ .

• a state may not be fully observable (partial information game)





# Components of a Game



State  $S_t \in S$  can be perceived through multiple sensors  $(S_t^{(1)}, S_t^{(2)}, \dots, S_t^{(n)})$ .

• a state may not be fully observable (partial information game)

The whole environment can be modelled as a probability distribution of possible outcomes:

$$P(R_{t+1}, S_{t+1} | S_0, A_0, S_1, A_1, \ldots, S_t, A_t)$$

• but we can also model both components separately









- learn which actions are good
- learn to anticipate the future





- learn which actions are good
- learn to anticipate the future







- learn which actions are good
- learn to anticipate the future







two popular learning approaches:

- learn which actions are good
- learn to anticipate the future

Knowledge of Game Model







- learn which actions are good
- learn to anticipate the future







- learn which actions are good
- learn to anticipate the future







- learn which actions are good
- learn to anticipate the future







two popular learning approaches:

- learn which actions are good
- learn to anticipate the future

Reinforcement Learning

 performance depends on the available training time







two popular learning approaches:

- learn which actions are good
- learn to anticipate the future

Reinforcement Learning

 performance depends on the available training time

Simulation-based Search







two popular learning approaches:

- learn which actions are good
- learn to anticipate the future

Reinforcement Learning

 performance depends on the available training time

Simulation-based Search







two popular learning approaches:

- learn which actions are good
- learn to anticipate the future

Reinforcement Learning

 performance depends on the available training time

Simulation-based Search







two popular learning approaches:

- learn which actions are good
- learn to anticipate the future

Reinforcement Learning

 performance depends on the available training time

Simulation-based Search











#### Input:

- current state
- game-model

#### **Output:**





current state

#### Input:

- current state
- game-model

#### **Output:**







#### Input:

- current state
- game-model

#### **Output:**







#### Input:

- current state
- game-model

#### **Output:**




## Simulation-Based Search Algorithms



#### Input:

- current state
- game-model

#### **Output:**

action with highest win-rate





## Simulation-Based Search Algorithms



#### Input:

- current state
- game-model

#### **Output:**

action with highest win-rate

### How to handle games for which:

- the game model is unknown?
- the state cannot be fully observed?





#### **Problem Context**



Goal: Learn to predict upcoming states of the environment.





Goal: Learn to predict upcoming states of the environment.

#### **Definition: Forward Model**

A forward model *fm* maps the environment's state S<sub>t</sub> and the agent's action A<sub>t</sub> at time t to the upcoming state S<sub>t+1</sub> of the environment:

$$\mathit{fm}:(\mathcal{S} imes\mathcal{A}) o\mathcal{S} \qquad (S_t,A_t)\longmapsto S_{t+1}$$





Goal: Learn to predict upcoming states of the environment.

#### **Definition: Forward Model**

A forward model *fm* maps the environment's state S<sub>t</sub> and the agent's action A<sub>t</sub> at time t to the upcoming state S<sub>t+1</sub> of the environment:

$$\mathit{fm}:(\mathcal{S} imes\mathcal{A}) o\mathcal{S} \qquad (S_t,A_t)\longmapsto S_{t+1}$$

• This definition only applies to environment models that fulfil the Markov property.





Goal: Learn to predict upcoming states of the environment.

#### **Definition: Forward Model**

A forward model *fm* maps the environment's state S<sub>t</sub> and the agent's action A<sub>t</sub> at time t to the upcoming state S<sub>t+1</sub> of the environment:

$$\mathit{fm}:(\mathcal{S} imes\mathcal{A}) o\mathcal{S} \qquad (S_t,A_t)\longmapsto S_{t+1}$$

• This definition only applies to environment models that fulfil the Markov property.

#### Markov Property:

• The environment fulfills the Markov property in case the upcoming state is independent of all states but the present state.

$$P(S_{t+1} | S_0, A_0, S_1, A_1, \ldots, S_t, A_t) \Rightarrow P(S_{t+1} | S_t, A_t)$$









#### **Problem Categorization:**

- choose the next state among the entirety of states
- either a classification or regression problem





#### **Problem Categorization:**

- choose the next state among the entirety of states
- either a classification or regression problem







#### **Problem Categorization:**

- choose the next state among the entirety of states
- either a classification or regression problem

#### Learning a model of the game:

- Gather experience while playing. Each observed state-transition equals one training example.
- Train a model given all observations.







#### Problem Categorization:

- choose the next state among the entirety of states
- either a classification or regression problem

#### Learning a model of the game:

- Gather experience while playing. Each observed state-transition equals one training example.
- Train a model given all observations.
- ⇒ The number of required examples can be dependent on the complexity of the state and action space







#### Problem Categorization:

- choose the next state among the entirety of states
- either a classification or regression problem

#### Learning a model of the game:

- Gather experience while playing. Each observed state-transition equals one training example.
- Train a model given all observations.
- ⇒ The number of required examples can be dependent on the complexity of the state and action space

The following methods represent attempts to reduce the complexity of the learning problem.







## **Decomposed Forward Models**<sup>[1]</sup>

#### **Assumptions:**

sensor values can be modelled independently

$$\forall i, j \in 1..n : i \neq j \Rightarrow S_{t+1}^{(i)} \perp L S_{t+1}^{(j)} \mid S_t, A_t$$

<sup>[1]</sup> Dockhorn, A., Tippelt, T., & Kruse, R. (2018). Model Decomposition for Forward Model Approximation





# **Decomposed Forward Models**<sup>[1]</sup>

#### **Assumptions:**

sensor values can be modelled independently

$$\forall i, j \in 1..n : i \neq j \Rightarrow S_{t+1}^{(i)} \perp L S_{t+1}^{(j)} \mid S_t, A_t$$

Learn one sub-model for each observable sensor value  $fm_i: (S_t, A_t) \longmapsto S_{t+1}^{(i)}$ 

| Environment's State           |                  |                  |                               |  |                               |  |  |  |
|-------------------------------|------------------|------------------|-------------------------------|--|-------------------------------|--|--|--|
| S <sub>t</sub> <sup>(1)</sup> | S <sup>(2)</sup> | S <sup>(3)</sup> | S <sub>t</sub> <sup>(4)</sup> |  | S <sub>t</sub> <sup>(n)</sup> |  |  |  |
| •                             | •                | •                | •                             |  | -                             |  |  |  |
| $FM_1$                        | $\mathbf{FM}_2$  | $FM_3$           | $\mathrm{FM}_4$               |  | FM <sub>n</sub>               |  |  |  |

<sup>[1]</sup> Dockhorn, A., Tippelt, T., & Kruse, R. (2018). Model Decomposition for Forward Model Approximation





# Decomposed Forward Models<sup>[1]</sup>

#### **Assumptions:**

sensor values can be modelled independently

$$\forall i, j \in 1..n : i \neq j \Rightarrow S_{t+1}^{(i)} \perp L S_{t+1}^{(j)} \mid S_t, A_t$$

Learn one sub-model for each observable sensor value  $f_{i}m:(S_t, A_t) \longmapsto S_{t+1}^{(i)}$ 

Aggregate the result of each sensor value prediction  $fm(S_t, A_t) = (fm_1(S_t, A_t), fm_2(S_t, A_t), \dots, fm_n(S_t, A_t))$   $= (S_{t+1}^{(1)}, S_{t+1}^{(2)}, \dots, S_{t+1}^{(n)}) = S_{t+1}$ 



<sup>[1]</sup> Dockhorn, A., Tippelt, T., & Kruse, R. (2018). Model Decomposition for Forward Model Approximation





#### **Assumptions:**

- structured representation of the state
- requires a similarity or distance function for sensor values
- semantic of a sensor-value is independent of its index





#### **Assumptions:**

- structured representation of the state
- requires a similarity or distance function for sensor values
- semantic of a sensor-value is independent of its index

| 0 | Ő |  |
|---|---|--|
|   |   |  |

Game-State of Sokoban





#### **Assumptions:**

- structured representation of the state
- requires a similarity or distance function for sensor values
- semantic of a sensor-value is independent of its index

| 0 | 8 |  |
|---|---|--|
|   |   |  |

Game-State of Sokoban



**Tilemap Components** 





#### **Assumptions:**

- structured representation of the state
- requires a similarity or distance function for sensor values
- semantic of a sensor-value is independent of its index

Tile-based Representation (of Video Games):

- a state can be represented as a matrix T of size  $n \times m$ 

$$T = \begin{bmatrix} T(1,1) & \dots & T(1,m) \\ \vdots & \ddots & \vdots \\ T(n,1) & \dots & T(n,m) \end{bmatrix}$$

• T(x, y) specifies the observed tile at position (x, y)



Game-State of Sokoban



**Tilemap Components** 









$$f_{x,y} : \left( \mathsf{N}(x,y)_t, \ \mathsf{A}_t \right) \longmapsto \mathsf{T}(x,y)_{t+1}$$

- $N(x, y)_t$  describes the local neighbourhood of tile T(x, y) at time t
- it contains each tile with distance less than a given threshold





$$fm_{x,y}: \left(N(x,y)_t, A_t\right) \longmapsto T(x,y)_{t+1}$$

- $N(x, y)_t$  describes the local neighbourhood of tile T(x, y) at time t
- it contains each tile with distance less than a given threshold







$$fm_{x,y}: \left(N(x,y)_t, A_t\right) \longmapsto T(x,y)_{t+1}$$

- $N(x, y)_t$  describes the local neighbourhood of tile T(x, y) at time t
- it contains each tile with distance less than a given threshold







$$fm_{x,y}: \left(N(x,y)_t, A_t\right) \longmapsto T(x,y)_{t+1}$$

- $N(x, y)_t$  describes the local neighbourhood of tile T(x, y) at time t
- it contains each tile with distance less than a given threshold







$$fm_{x,y}: \left(N(x,y)_t, A_t\right) \longmapsto T(x,y)_{t+1}$$

- $N(x, y)_t$  describes the local neighbourhood of tile T(x, y) at time t
- it contains each tile with distance less than a given threshold







Predict the next state by predicting each tile

$$T_{t+1} = \begin{bmatrix} fm_{1,1}(N(1,1),A_t) & \dots & fm_{1,m}(N(1,m),A_t) \\ \vdots & \ddots & \vdots \\ fm_{n,1}(N(n,1),A_t) & \dots & fm_{n,m}(N(n,m),A_t) \end{bmatrix}$$





Predict the next state by predicting each tile

$$T_{t+1} = \begin{bmatrix} fm_{1,1}(N(1,1),A_t) & \dots & fm_{1,m}(N(1,m),A_t) \\ \vdots & \ddots & \vdots \\ fm_{n,1}(N(n,1),A_t) & \dots & fm_{n,m}(N(n,m),A_t) \end{bmatrix}$$

In case the semantic of a tile is independent of its position, only a single model needs to be learned





Predict the next state by predicting each tile

$$T_{t+1} = \begin{bmatrix} fm_{1,1}(N(1,1),A_t) & \dots & fm_{1,m}(N(1,m),A_t) \\ \vdots & \ddots & \vdots \\ fm_{n,1}(N(n,1),A_t) & \dots & fm_{n,m}(N(n,m),A_t) \end{bmatrix}$$

In case the semantic of a tile is independent of its position, only a single model needs to be learned







Predict the next state by predicting each tile

$$T_{t+1} = \begin{bmatrix} fm_{1,1}(N(1,1),A_t) & \dots & fm_{1,m}(N(1,m),A_t) \\ \vdots & \ddots & \vdots \\ fm_{n,1}(N(n,1),A_t) & \dots & fm_{n,m}(N(n,m),A_t) \end{bmatrix}$$

In case the semantic of a tile is independent of its position, only a single model needs to be learned

Advantage: higher sampling efficiency

 each observed state transition consists of one observed pattern per tile (in total: n × m patterns)






# Modelling Entities of a Game I/II

Measuring the importance of each tile in the local neighborhood indicates a high importance of the center tile.

 $\Rightarrow$  instead of modelling the change of each position, model the change of represented objects



Feature Importance of Neighborhood Tiles





# Modelling Entities of a Game I/II

Measuring the importance of each tile in the local neighborhood indicates a high importance of the center tile.

 $\Rightarrow$  instead of modelling the change of each position, model the change of represented objects

#### **Object-based Representation**

• the state consists of multiple entities of which several attributes can be observed



Feature Importance of Neighborhood Tiles





# Modelling Entities of a Game I/II

Measuring the importance of each tile in the local neighborhood indicates a high importance of the center tile.

 $\Rightarrow$  instead of modelling the change of each position, model the change of represented objects

#### **Object-based Representation**

• the state consists of multiple entities of which several attributes can be observed



Feature Importance of Neighborhood Tiles

$$S = (S^{(1)}, S^{(2)}, \dots, S^{(n)})$$
  
=  $(\underbrace{S^{(1,1)}, \dots, S^{(1,i)}}_{\text{Object 1}}, \underbrace{S^{(2,1)}, \dots, S^{(2,j)}}_{\text{Object 2}}, \dots, \underbrace{S^{(m,1)}, \dots, S^{(m,k)}}_{\text{Object m}})$ 





# Modelling Entities of a Game II/II

#### **Assumptions:**

- game components are considered to represent indepently acting entities
- similar looking objects exhibit similar behavior





# Modelling Entities of a Game II/II

#### **Assumptions:**

- game components are considered to represent indepently acting entities
- similar looking objects exhibit similar behavior

Create one model for each entity or entity type

$$f_{i}^{m}: \left((S_{t}^{(i,1)},\ldots,S_{t}^{(i,k)}), A_{t}\right) \longmapsto (S_{t+1}^{(i,1)},\ldots,S_{t+1}^{(i,k)})$$





# Modelling Entities of a Game II/II

#### **Assumptions:**

- game components are considered to represent indepently acting entities
- similar looking objects exhibit similar behavior

Create one model for each entity or entity type

$$f_{i}^{m}:\left((S_{t}^{(i,1)},\ldots,S_{t}^{(i,k)}), A_{t}\right)\longmapsto(S_{t+1}^{(i,1)},\ldots,S_{t+1}^{(i,k)})$$

Complex entities can be modelled using a decomposed forward model

create one model for each observable sensor value

$$f_{i,j}^{m}:\left((S_t^{(i,1)},\ldots,S_t^{(i,k)}),\ A_t\right)\longmapsto S_{t+1}^{(i,j)}$$





$$fm(S_t, A_t) = (fm(S_t, A_t), \ldots, fm(S_t, A_t))$$





$$fm(S_t, A_t) = (fm(S_t, A_t), \ldots, fm(S_t, A_t))$$







$$\begin{aligned} f_m(S_t, A_t) &= (f_m(S_t, A_t), \ \dots, \ f_n(S_t, A_t)) \\ &= ((f_{1,1}((S_t^{(1,1)}, \dots, S_t^{(1,k)}), A_t), \ \dots, \ f_{m,k}((S_t^{(m,1)}, \dots, S_t^{(m,k')}), A_t))) \end{aligned}$$







$$fm(S_t, A_t) = (fm(S_t, A_t), \dots, fm(S_t, A_t))$$
  
=  $((fm((S_t^{(1,1)}, \dots, S_t^{(1,k)}), A_t), \dots, fm((S_t^{(m,1)}, \dots, S_t^{(m,k')}), A_t)))$   
=  $(S_{t+1}^{(1)}, S_{t+1}^{(2)}, \dots, S_{t+1}^{(n)}) = S_{t+1}$ 







$$fm(S_t, A_t) = (fm_1(S_t, A_t), \dots, fm_n(S_t, A_t))$$
  
=  $((fm_{1,1}((S_t^{(1,1)}, \dots, S_t^{(1,k)}), A_t), \dots, fm_{m,k}((S_t^{(m,1)}, \dots, S_t^{(m,k')}), A_t)))$   
=  $(S_{t+1}^{(1)}, S_{t+1}^{(2)}, \dots, S_{t+1}^{(n)}) = S_{t+1}$ 













Qualitative comparison of proposed forward models architectures;

| Forward Model                                     | #Models | Model<br>Complexity | Interpret-<br>ability | Transfer<br>across levels |
|---------------------------------------------------|---------|---------------------|-----------------------|---------------------------|
| End-To-End<br>Decomposed<br>Local<br>Object-based |         |                     |                       |                           |





Qualitative comparison of proposed forward models architectures;

| Forward Model | #Models | Model<br>Complexity | Interpret-<br>ability | Transfer<br>across levels |
|---------------|---------|---------------------|-----------------------|---------------------------|
| End-To-End    | +       |                     |                       |                           |
| Decomposed    | _       |                     |                       |                           |
| Local         | +       |                     |                       |                           |
| Object-based  | ~       |                     |                       |                           |





Qualitative comparison of proposed forward models architectures;

| Forward Model | #Models | Model<br>Complexity | Interpret-<br>ability | Transfer<br>across levels |
|---------------|---------|---------------------|-----------------------|---------------------------|
| End-To-End    | +       |                     |                       |                           |
| Decomposed    | _       | ~                   |                       |                           |
| Local         | +       | +                   |                       |                           |
| Object-based  | ~       | ~                   |                       |                           |





Qualitative comparison of proposed forward models architectures;

| Forward Model | #Models | Model<br>Complexity | Interpret-<br>ability | Transfer<br>across levels |
|---------------|---------|---------------------|-----------------------|---------------------------|
| End-To-End    | +       |                     | _                     |                           |
| Decomposed    |         | ~                   | ~                     |                           |
| Local         | +       | +                   | +                     |                           |
| Object-based  | ~       | ~                   | +                     |                           |





Qualitative comparison of proposed forward models architectures;

| Forward Model | #Models | Model<br>Complexity | Interpret-<br>ability | Transfer<br>across levels |
|---------------|---------|---------------------|-----------------------|---------------------------|
| End-To-End    | +       |                     | _                     |                           |
| Decomposed    | _       | ~                   | ~                     |                           |
| Local         | +       | +                   | +                     | +                         |
| Object-based  | ~       | ~                   | +                     | +                         |



The evaluation is based on 30 games of the General Video Game AI (GVGAI) framework





The evaluation is based on 30 games of the General Video Game AI (GVGAI) framework

#### Varying Game Characteristics:

- types and number of NPCs
- use of a ressource system
- reward style (dense/sparse)
- the number and types of termination conditions
- determinism vs. non-determinism
- the number of actions available







Local and Object-based Forward Models (LFM/OBFM) have been used in conjunction with:





Local and Object-based Forward Models (LFM/OBFM) have been used in conjunction with:

- Breadth First Search (BFS)
- Rolling Horizon Evoluationary Algorithm (RHEA)
- Monte Carlo Tree Search (MCTS)





Local and Object-based Forward Models (LFM/OBFM) have been used in conjunction with:

- Breadth First Search (BFS)
- Rolling Horizon Evoluationary Algorithm (RHEA)
- Monte Carlo Tree Search (MCTS)

Trained agents are compared to a random agent

• in previous research competitions no agent performed significantly better





Local and Object-based Forward Models (LFM/OBFM) have been used in conjunction with:

- Breadth First Search (BFS)
- Rolling Horizon Evoluationary Algorithm (RHEA)
- Monte Carlo Tree Search (MCTS)

Trained agents are compared to a random agent

• in previous research competitions no agent performed significantly better

Scenarios for Evaluating the Game-Playing Performance

- Constant Model
- Continuous-Learning
- Transfer-Learning





Local and Object-based Forward Models (LFM/OBFM) have been used in conjunction with:

- Breadth First Search (BFS)
- Rolling Horizon Evoluationary Algorithm (RHEA)
- Monte Carlo Tree Search (MCTS)

Trained agents are compared to a random agent

• in previous research competitions no agent performed significantly better

Scenarios for Evaluating the Game-Playing Performance

- Constant Model
- Continuous-Learning
- Transfer-Learning





## Learning a Constant Forward Model for each Game

#### **Data Set Generation**

- collection of observed state transitions of a random agent
- all 5 levels were played 10 times for a maximum of 200 ticks each
- 9 different local neighborhood patterns were extracted (one data set each)





## Learning a Constant Forward Model for each Game

#### **Data Set Generation**

- collection of observed state transitions of a random agent
- all 5 levels were played 10 times for a maximum of 200 ticks each
- 9 different local neighborhood patterns were extracted (one data set each)

#### Accuracy Evaluation and Model Selection

evaluation of 5 classifiers, multiple parameters





## Learning a Constant Forward Model for each Game

#### **Data Set Generation**

- collection of observed state transitions of a random agent
- all 5 levels were played 10 times for a maximum of 200 ticks each
- 9 different local neighborhood patterns were extracted (one data set each)

#### Accuracy Evaluation and Model Selection

• evaluation of 5 classifiers, multiple parameters







## **Evaluating Game-Playing Performance**

agents are ranked according to their:

- average win-rate, average score, average ticks of won and lost games
- results are clustered to find groups of games in which the agent performs similar





# **Evaluating Game-Playing Performance**

agents are ranked according to their:

- average win-rate, average score, average ticks of won and lost games
- results are clustered to find groups of games in which the agent performs similar



sparse reward, maze-like, long-term planning, randomness and ressources, puzzles





## **Detailed Game Results**

#### **Results on Maze-Like Games**



 $\label{eq:Rank Comparison:} \begin{array}{l} \mbox{BFS} = \mbox{MCTS} > \mbox{RHEA} > \mbox{Random} \\ \mbox{LFM} > \mbox{OBFM} > \mbox{Random} \end{array}$ 

all effects are local

decepticoins, deceptizelda and painter involve spawning elements, which OBFM cannot model





## **Detailed Game Results**

#### **Results on Puzzle Games**



 $\label{eq:Rank Comparison:} \begin{array}{l} \mbox{BFS} > \mbox{MCTS} > \mbox{RHEA} > \mbox{Random} \\ \mbox{OBFM} > \mbox{LFM} > \mbox{Random} \end{array}$ 

most but not all effects are local (e.g. Doorkoban)





### **Detailed Game Results**

**Results on Games with Sparse Reward** 



Rank Comparison: Random > RHEA > BFS = MCTS Random > OBFM = LFM

rare rewards hinder in agent in distinguishing good and bad actions

more training data is required to create a reliable model




# **Aggregated Results: Game-Playing Performance**

Aggregated ranks over all tested games and final score per agent

| Agents |      | $1^{st}$ | 2 <sup>nd</sup> | 3 <sup>rd</sup> | Rank<br>4 <sup>th</sup> | 5 <sup>th</sup> | $6^{th}$ | 7 <sup>th</sup> | Formula-1<br>Score |
|--------|------|----------|-----------------|-----------------|-------------------------|-----------------|----------|-----------------|--------------------|
| Random |      | 4        | 0               | 1               | 3                       | 3               | 4        | 15              | 303                |
| LFM    | BFS  | 10       | 5               | 4               | 4                       | 2               | 2        | 3               | 502                |
|        | RHEA | 3        | 3               | 3               | 8                       | 3               | 10       | 0               | 380                |
|        | MCTS | 5        | 3               | 8               | 4                       | 2               | 4        | 4               | 423                |
| OBFM   | BFS  | 6        | 8               | 2               | 4                       | 4               | 1        | 5               | 450                |
|        | RHEA | 3        | 5               | 6               | 2                       | 10              | 4        | 0               | 411                |
|        | MCTS | 5        | 7               | 4               | 3                       | 5               | 4        | 2               | 441                |

Formula-1 Scoring System:  $1^{st} = 25, 2^{nd} = 18, 3^{rd} = 15, 4th = 12, 5th = 10, 6th = 8, 7th = 6$ 





# **Aggregated Results: Game-Playing Performance**

Aggregated ranks over all tested games and final score per agent

| Agents |      | 1 <sup>st</sup> | 2 <sup>nd</sup> | 3 <sup>rd</sup> | Rank<br>4 <sup>th</sup> | 5 <sup>th</sup> | 6 <sup>th</sup> | 7 <sup>th</sup> | Formula-1<br>Score |
|--------|------|-----------------|-----------------|-----------------|-------------------------|-----------------|-----------------|-----------------|--------------------|
| Random |      | 4               | 0               | 1               | 3                       | 3               | 4               | 15              | 303                |
| LFM    | BFS  | 10              | 5               | 4               | 4                       | 2               | 2               | 3               | 502                |
|        | RHEA | 3               | 3               | 3               | 8                       | 3               | 10              | 0               | 380                |
|        | MCTS | 5               | 3               | 8               | 4                       | 2               | 4               | 4               | 423                |
| OBFM   | BFS  | 6               | 8               | 2               | 4                       | 4               | 1               | 5               | 450                |
|        | RHEA | 3               | 5               | 6               | 2                       | 10              | 4               | 0               | 411                |
|        | MCTS | 5               | 7               | 4               | 3                       | 5               | 4               | 2               | 441                |

Formula-1 Scoring System:  $1^{st} = 25, 2^{nd} = 18, 3^{rd} = 15, 4th = 12, 5th = 10, 6th = 8, 7th = 6$ 





# Conclusion

Simulation-based search requires extensions to be used in case:

- the environment's forward model is inaccessible
- the environment's state is partial observable

| Problem Context                                              | Problem Definition              | Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Evaluation                                            |
|--------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Minister                                                     |                                 | Proved Work Scaning<br>Red in End PA<br>Beamsysted FM<br>End FM<br>Digits haved FM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Madel Asservey<br>Agent Roborney<br>Transfer Learning |
| Garang an<br>Algarithm for<br>Administration<br>Garan Reging | - Zutar<br>Barratar<br>Barratar | Problem lines lines and solutions<br>block force in region<br>for the solution of the solution<br>for the solution of the solution<br>Markowski and the solution of th | Minké Anorany<br>Agent Padarmana                      |





# Conclusion

Simulation-based search requires extensions to be used in case:

- the environment's forward model is inaccessible
- the environment's state is partial observable





Four types of forward models were introduced.

- The underlying independency assumptions reduced the size of the model space and the required training time.
- A prediction-based search agent has been proposed.





# Conclusion

Simulation-based search requires extensions to be used in case:

- the environment's forward model is inaccessible
- the environment's state is partial observable





Four types of forward models were introduced.

- The underlying independency assumptions reduced the size of the model space and the required training time.
- A prediction-based search agent has been proposed.

Agents were succesfully trained to play GVGAI games.

- trained agents achieved a high state prediction accuracy and game-playing performance
- learned models can be transferred to unobserved levels

| 1.0        | Age  | Formula-1<br>Score |     |
|------------|------|--------------------|-----|
| 0.6        | Ran  | 303                |     |
| 0.0        |      | BFS                | 502 |
| 0.4        | LFM  | RHEA               | 380 |
| 0.2        |      | MCTS               | 423 |
| 0.0        |      | BFS                | 450 |
| 0.0        | OBFM | RHEA               | 411 |
| Decisitiee |      | MCTS               | 441 |





#### State-of-the-Art

#### **Proposed Solution**

### Thank you for your attention!

### **Alexander Dockhorn**

alexander.dockhorn@ovgu.de Otto-von-Guericke University of Magdeburg Faculty of Computer Science Institute for Intelligent Cooperating Systems





# References

### **Alexander Dockhorn**

alexander.dockhorn@ovgu.de Otto-von-Guericke University of Magdeburg Faculty of Computer Science Institute for Intelligent Cooperating Systems





# Publications - Forward Model learning I/II

#### **Book Chapter**

**Alexander Dockhorn**, Chris Saxton, and Rudolf Kruse; *Association Rule Mining for Unknown Video Games*, A fuzzy dictionary of fuzzy modelling. Common concepts and perspectives, (Accepted), 2020

#### **Journal Paper**

Daan Apeldoorn and **Alexander Dockhorn**; *Exception-Tolerant Hierarchical KnowledgeBases for Forward Model Learning*, IEEE Transactions on Games (TOG) (Submitted)

#### **Conference** Paper

Alexander Dockhorn and Rudolf Kruse; Forward Model Learning for Motion Control Tasks, 10th IEEE International Conference on Intelligent Systems IS'20 (Accepted)

Alexander Dockhorn and Simon Lucas; *Local Forward Model Learning for GVGAI Games*, 2020 IEEE Conference on Games (Submitted)





# Publications - Forward Model learning II/II

#### **Conference** Paper

Simon Lucas, **Alexander Dockhorn**, Vanessa Volz, Chris Bamford, Raluca Gaina, Ivan Bravi, Diego Perez-Liebana, and Rudolf Kruse; *A Local Approach to Forward Model Learning: Results on the Game of Life Game*. In 2019 IEEE Conference on Games (CoG) (pp. 1–8). IEEE.

Alexander Dockhorn, Simon Lucas, Vanessa Volz, Ivan Bravi, Raluca Gaina, and Diego Perez-Liebana; *Learning Local Forward Models on Unforgiving Games.* In 2019 IEEE Conference on Games (CoG) (pp. 1–4). IEEE.

**Alexander Dockhorn**, Tim Tippelt, and Rudolf Kruse; *Model Decomposition for Forward Model Approximation*, IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, November 2018, pp. 1751–1757

**Alexander Dockhorn** and Daan Apeldoorn; *Forward Model Approximation for General Video Game Learning*, 2018 IEEE Conference on Computational Intelligence and Games (CIG), IEEE, August 2018, pp. 425-432

#### Workshop Paper

**Alexander Dockhorn** and Rudolf Kruse; *Detecting Sensor Dependencies for Building Complementary Model Ensembles*, 28. Workshop Computational Intelligence, KIT Publishing, November 2018, pp. 217-233





# **Publications Predictive State-Determinization**

#### **Journal Paper**

Alexander Dockhorn, Rudolf Kruse; *Metagame-based Prediction of Cards via Fuzzy Multiset Clustering*, International Journal of Computational Intelligence Systems (Submitted)

#### **Conference** Paper

**Alexander Dockhorn**, Tony Schwensfeier, Rudolf Kruse; *Fuzzy Multiset Clustering for Metagame Analysis*, in Proceedings of the 2019 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (EUSFLAT 2019). Paris, France

**Alexander Dockhorn**, Max Frick, Ünal Akkaya, and Rudolf Kruse; *Predicting Opponent Moves for Improving Hearthstone AI*, 17th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU), Springer International Publishing, May 2018, pp. 621-632

**Alexander Dockhorn**, Christoph Doell, Matthias Hewelt, and Rudolf Kruse; *A decision heuristic for Monte Carlo tree search doppelkopf agents*, IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, November 2017, pp. 51-58





# Publications on other Topics I/II

#### **Journal Papers**

Pascal Held, **Alexander Dockhorn**, and Rudolf Kruse; *n Merging and Dividing Social Graphs*. Journal of Artificial Intelligence and Soft Computing Research, 5(1), 23–49.

#### **Conference Papers**

**Alexander Dockhorn** and Rudolf Kruse; *Combining cooperative and adversarial coevolution in the context of pac-man*, 2017 IEEE Conference on Computational Intelligence and Games (CIG), IEEE, August 2017, pp. 60-67

Tim Sabsch, Christian Braune, **Alexander Dockhorn**, and Rudolf Kruse; *Using a Multiobjective Genetic Algorithm for Curve Approximation*. In 2017 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE.

**Alexander Dockhorn**, Christian Braune, Rudolf Kruse; *Variable density based clustering*. In 2016 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1–8). IEEE.





# Publications on other Topics II/II

#### **Conference Papers**

Pascal Held, Alexander Dockhorn, Benjamin Krause, and Rudolf Kruse; *Clustering Social Networks Using Competing Ant Hives*. In 2015 Second European Network Intelligence Conference (pp. 67–74). IEEE.

**Alexander Dockhorn**, Christian Braune, and Rudolf Kruse; *An Alternating Optimization Approach based on Hierarchical Adaptations of DBSCAN*. In 2015 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 749–755).

Pascal Held, **Alexander Dockhorn**, and Rudolf Kruse; *Generating Events for Dynamic Social Network Simulations*. 15th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2014.

Pascal Held, **Alexander Dockhorn**, and Rudolf Kruse; *On Merging and Dividing of Barabasi-Albert-graphs*. In 2014 IEEE Symposium on Evolving and Autonomous Learning Systems (EALS) (Vol. 444, pp. 17–24).

#### Preprints

**Alexander Dockhorn**, Sanaz Mostaghim; *Introducing the Hearthstone-AI Competition*, 1–4. Arxiv ID: 1906.04238