
A. Dockhorn Prediction-based Search for Autonomous Game-Playing 1 / 28

Prediction-based Search for Autonomous
Game-Playing
PhD Defense Presentation

Alexander Dockhorn
alexander.dockhorn@ovgu.de

Otto-von-Guericke University of Magdeburg
Faculty of Computer Science

Institute for Intelligent Cooperating Systems

mailto:alexander.dockhorn@ovgu.de
http://www.is.ovgu.de/Team/Alexander+Dockhorn.html
http://www.ovgu.de/
http://www.fin.ovgu.de/
http://www.iks.ovgu.de/IKS.html

Motivation
Computational Intelligence refers to the ability of a computer to learn a specific task from
data or experimental observation.

• steering of self-driving cars and parking aids
• automating a production pipeline

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 2 / 28

mailto:alexander.dockhorn@ovgu.de

Motivation
Computational Intelligence refers to the ability of a computer to learn a specific task from
data or experimental observation.

• steering of self-driving cars and parking aids

• automating a production pipeline

[1]

[2]

[1] https://commons.wikimedia.org/wiki/File:Tesla_Autopilot_Engaged_in_Model_X.jpg

[2] https://commons.wikimedia.org/wiki/File:Industrieroboter.jpg

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 2 / 28

https://commons.wikimedia.org/wiki/File:Tesla_Autopilot_Engaged_in_Model_X.jpg
https://commons.wikimedia.org/wiki/File:Industrieroboter.jpg
mailto:alexander.dockhorn@ovgu.de

Motivation
Computational Intelligence refers to the ability of a computer to learn a specific task from
data or experimental observation.

• steering of self-driving cars and parking aids
• automating a production pipeline

[1] [2]

[1] https://commons.wikimedia.org/wiki/File:Tesla_Autopilot_Engaged_in_Model_X.jpg
[2] https://commons.wikimedia.org/wiki/File:Industrieroboter.jpg

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 2 / 28

https://commons.wikimedia.org/wiki/File:Tesla_Autopilot_Engaged_in_Model_X.jpg
https://commons.wikimedia.org/wiki/File:Industrieroboter.jpg
mailto:alexander.dockhorn@ovgu.de

Motivation
Computational Intelligence refers to the ability of a computer to learn a specific task from
data or experimental observation.

• steering of self-driving cars and parking aids
• automating a production pipeline

Problems:
• real tasks are hard to setup and evaluate
• failure of the algorithm has considerable cost (e.g. car crash)

Games can be simulations of real world tasks

• quantifiable goal, varying difficulty, and large data sets
• digital games are fully accessible to computers

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 2 / 28

mailto:alexander.dockhorn@ovgu.de

Motivation
Computational Intelligence refers to the ability of a computer to learn a specific task from
data or experimental observation.

• steering of self-driving cars and parking aids
• automating a production pipeline

Problems:
• real tasks are hard to setup and evaluate
• failure of the algorithm has considerable cost (e.g. car crash)

Games can be simulations of real world tasks
• quantifiable goal, varying difficulty, and large data sets
• digital games are fully accessible to computers

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 2 / 28

mailto:alexander.dockhorn@ovgu.de

A Short History of Computational Intelligence in Games

these were achieved using reinforcement learning algorithms and months of training

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 3 / 28

mailto:alexander.dockhorn@ovgu.de

A Short History of Computational Intelligence in Games

heuristic solutions, planning agents and reinforcement learning agents

these were achieved using reinforcement learning algorithms and months of training

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 3 / 28

mailto:alexander.dockhorn@ovgu.de

A Short History of Computational Intelligence in Games

these were achieved using reinforcement learning algorithms and months of training

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 3 / 28

mailto:alexander.dockhorn@ovgu.de

A Short History of Computational Intelligence in Games

these were achieved using reinforcement learning algorithms and months of training

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 3 / 28

mailto:alexander.dockhorn@ovgu.de

Agent-Environment Interface

state reward action

Environment

Agent

St Rt At

Rt+1

St+1

A general framework for studying games which consists of the elements:

• Agent: the learner and decision-maker
• Environment: anything the agent interacts with, e.g. a game
• Actions: Agent and environment interact continuously interact with each other.

• the agent selects an action
• the environment responds to those actions

• Reward: numerical values provided that the agent tries to maximize over time.

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 4 / 28

mailto:alexander.dockhorn@ovgu.de

Agent-Environment Interface

state reward action

Environment

Agent

St Rt At

Rt+1

St+1

A general framework for studying games which consists of the elements:
• Agent: the learner and decision-maker

• Environment: anything the agent interacts with, e.g. a game
• Actions: Agent and environment interact continuously interact with each other.

• the agent selects an action
• the environment responds to those actions

• Reward: numerical values provided that the agent tries to maximize over time.

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 4 / 28

mailto:alexander.dockhorn@ovgu.de

Agent-Environment Interface

state reward action

Environment

Agent

St Rt At

Rt+1

St+1

A general framework for studying games which consists of the elements:
• Agent: the learner and decision-maker
• Environment: anything the agent interacts with, e.g. a game

• Actions: Agent and environment interact continuously interact with each other.
• the agent selects an action
• the environment responds to those actions

• Reward: numerical values provided that the agent tries to maximize over time.

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 4 / 28

mailto:alexander.dockhorn@ovgu.de

Agent-Environment Interface

state reward action

Environment

Agent

St Rt At

Rt+1

St+1

A general framework for studying games which consists of the elements:
• Agent: the learner and decision-maker
• Environment: anything the agent interacts with, e.g. a game
• Actions: Agent and environment interact continuously interact with each other.

• the agent selects an action
• the environment responds to those actions

• Reward: numerical values provided that the agent tries to maximize over time.

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 4 / 28

mailto:alexander.dockhorn@ovgu.de

Agent-Environment Interface

state reward action

Environment

Agent

St Rt At

Rt+1

St+1

A general framework for studying games which consists of the elements:
• Agent: the learner and decision-maker
• Environment: anything the agent interacts with, e.g. a game
• Actions: Agent and environment interact continuously interact with each other.

• the agent selects an action
• the environment responds to those actions

• Reward: numerical values provided that the agent tries to maximize over time.
A. Dockhorn Prediction-based Search for Autonomous Game-Playing 4 / 28

mailto:alexander.dockhorn@ovgu.de

Components of a Game

states S0, . . . , St ,
actions A0, . . . , At

State Transition Function

Reward Function

state St+1

reward Rt+1

Environment

State St ∈ S can be perceived through multiple sensors (S(1)
t , S(2)

t , . . . , S(n)
t).

• a state may not be fully observable (partial information game)

The whole environment can be modelled as a probability distribution of possible outcomes:
P(Rt+1, St+1 | S0, A0, S1, A1, . . . , St , At)

• but we can also model both components separately

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 5 / 28

mailto:alexander.dockhorn@ovgu.de

Components of a Game

states S0, . . . , St ,
actions A0, . . . , At

State Transition Function

Reward Function

state St+1

reward Rt+1

Environment

State St ∈ S can be perceived through multiple sensors (S(1)
t , S(2)

t , . . . , S(n)
t).

• a state may not be fully observable (partial information game)

The whole environment can be modelled as a probability distribution of possible outcomes:
P(Rt+1, St+1 | S0, A0, S1, A1, . . . , St , At)

• but we can also model both components separately

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 5 / 28

mailto:alexander.dockhorn@ovgu.de

Components of a Game

states S0, . . . , St ,
actions A0, . . . , At

State Transition Function

Reward Function

state St+1

reward Rt+1

Environment

State St ∈ S can be perceived through multiple sensors (S(1)
t , S(2)

t , . . . , S(n)
t).

• a state may not be fully observable (partial information game)

The whole environment can be modelled as a probability distribution of possible outcomes:
P(Rt+1, St+1 | S0, A0, S1, A1, . . . , St , At)

• but we can also model both components separately

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 5 / 28

mailto:alexander.dockhorn@ovgu.de

Methods for Computational Intelligence in Games

Knowledge of Expected Return

K
no
wl
ed
ge

of
Ga

m
e
M
od

el

no return data,
no game model

expected return
of every state

game model
known

Reinforcement
Learning
(TD, MC)

Simulation-Based
Search Methods
(MCTS, MIN-MAX)

approximate return function

ap
pr
ox
im

at
e

ga
m
e
m
od

el

Deep Reinforcement Learning

Prediction-based Search

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 6 / 28

mailto:alexander.dockhorn@ovgu.de

Methods for Computational Intelligence in Games
two popular learning approaches:

• learn which actions are good
• learn to anticipate the future

Knowledge of Expected Return

K
no
wl
ed
ge

of
Ga

m
e
M
od

el

no return data,
no game model

expected return
of every state

game model
known

Reinforcement
Learning
(TD, MC)

Simulation-Based
Search Methods
(MCTS, MIN-MAX)

approximate return function

ap
pr
ox
im

at
e

ga
m
e
m
od

el

Deep Reinforcement Learning

Prediction-based Search

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 6 / 28

mailto:alexander.dockhorn@ovgu.de

Methods for Computational Intelligence in Games
two popular learning approaches:

• learn which actions are good
• learn to anticipate the future

Knowledge of Expected Return

K
no
wl
ed
ge

of
Ga

m
e
M
od

el

no return data,
no game model

expected return
of every state

game model
known

Reinforcement
Learning
(TD, MC)

Simulation-Based
Search Methods
(MCTS, MIN-MAX)

approximate return function

ap
pr
ox
im

at
e

ga
m
e
m
od

el

Deep Reinforcement Learning

Prediction-based Search

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 6 / 28

mailto:alexander.dockhorn@ovgu.de

Methods for Computational Intelligence in Games
two popular learning approaches:

• learn which actions are good
• learn to anticipate the future

Knowledge of Expected Return

K
no
wl
ed
ge

of
Ga

m
e
M
od

el

no return data,
no game model

expected return
of every state

game model
known

Reinforcement
Learning
(TD, MC)

Simulation-Based
Search Methods
(MCTS, MIN-MAX)

approximate return function

ap
pr
ox
im

at
e

ga
m
e
m
od

el

Deep Reinforcement Learning

Prediction-based Search

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 6 / 28

mailto:alexander.dockhorn@ovgu.de

Methods for Computational Intelligence in Games
two popular learning approaches:

• learn which actions are good
• learn to anticipate the future

Knowledge of Expected Return

K
no
wl
ed
ge

of
Ga

m
e
M
od

el

no return data,
no game model

expected return
of every state

game model
known

Reinforcement
Learning
(TD, MC)

Simulation-Based
Search Methods
(MCTS, MIN-MAX)

approximate return function

ap
pr
ox
im

at
e

ga
m
e
m
od

el

Deep Reinforcement Learning

Prediction-based Search

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 6 / 28

mailto:alexander.dockhorn@ovgu.de

Methods for Computational Intelligence in Games
two popular learning approaches:

• learn which actions are good
• learn to anticipate the future

Knowledge of Expected Return

K
no
wl
ed
ge

of
Ga

m
e
M
od

el
no return data,
no game model

expected return
of every state

game model
known

Reinforcement
Learning
(TD, MC)

Simulation-Based
Search Methods
(MCTS, MIN-MAX)

approximate return function

ap
pr
ox
im

at
e

ga
m
e
m
od

el

Deep Reinforcement Learning

Prediction-based Search

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 6 / 28

mailto:alexander.dockhorn@ovgu.de

Methods for Computational Intelligence in Games
two popular learning approaches:

• learn which actions are good
• learn to anticipate the future

Knowledge of Expected Return

K
no
wl
ed
ge

of
Ga

m
e
M
od

el
no return data,
no game model

expected return
of every state

game model
known

Reinforcement
Learning
(TD, MC)

Simulation-Based
Search Methods
(MCTS, MIN-MAX)

approximate return function

ap
pr
ox
im

at
e

ga
m
e
m
od

el

Deep Reinforcement Learning

Prediction-based Search

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 6 / 28

mailto:alexander.dockhorn@ovgu.de

Methods for Computational Intelligence in Games
two popular learning approaches:

• learn which actions are good
• learn to anticipate the future

Knowledge of Expected Return

K
no
wl
ed
ge

of
Ga

m
e
M
od

el
no return data,
no game model

expected return
of every state

game model
known

Reinforcement
Learning
(TD, MC)

Simulation-Based
Search Methods
(MCTS, MIN-MAX)

approximate return function

ap
pr
ox
im

at
e

ga
m
e
m
od

el

Deep Reinforcement Learning

Prediction-based Search

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 6 / 28

mailto:alexander.dockhorn@ovgu.de

Methods for Computational Intelligence in Games
two popular learning approaches:

• learn which actions are good
• learn to anticipate the future

Reinforcement Learning
• performance depends on the

available training time

Knowledge of Expected Return

K
no
wl
ed
ge

of
Ga

m
e
M
od

el
no return data,
no game model

expected return
of every state

game model
known

Reinforcement
Learning
(TD, MC)

Simulation-Based
Search Methods
(MCTS, MIN-MAX)

approximate return function

ap
pr
ox
im

at
e

ga
m
e
m
od

el

Deep Reinforcement Learning

Prediction-based Search

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 6 / 28

mailto:alexander.dockhorn@ovgu.de

Methods for Computational Intelligence in Games
two popular learning approaches:

• learn which actions are good
• learn to anticipate the future

Reinforcement Learning
• performance depends on the

available training time

Simulation-based Search
• performance depends on the

available computation time dur-
ing evaluation Knowledge of Expected Return

K
no
wl
ed
ge

of
Ga

m
e
M
od

el
no return data,
no game model

expected return
of every state

game model
known

Reinforcement
Learning
(TD, MC)

Simulation-Based
Search Methods
(MCTS, MIN-MAX)

approximate return function

ap
pr
ox
im

at
e

ga
m
e
m
od

el

Deep Reinforcement Learning

Prediction-based Search

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 6 / 28

mailto:alexander.dockhorn@ovgu.de

Methods for Computational Intelligence in Games
two popular learning approaches:

• learn which actions are good
• learn to anticipate the future

Reinforcement Learning
• performance depends on the

available training time

Simulation-based Search
• performance depends on the

available computation time dur-
ing evaluation Knowledge of Expected Return

K
no
wl
ed
ge

of
Ga

m
e
M
od

el
no return data,
no game model

expected return
of every state

game model
known

Reinforcement
Learning
(TD, MC)

Simulation-Based
Search Methods
(MCTS, MIN-MAX)

approximate return function
ap
pr
ox
im

at
e

ga
m
e
m
od

el

Deep Reinforcement Learning

Prediction-based Search

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 6 / 28

mailto:alexander.dockhorn@ovgu.de

Methods for Computational Intelligence in Games
two popular learning approaches:

• learn which actions are good
• learn to anticipate the future

Reinforcement Learning
• performance depends on the

available training time

Simulation-based Search
• performance depends on the

available computation time dur-
ing evaluation Knowledge of Expected Return

K
no
wl
ed
ge

of
Ga

m
e
M
od

el
no return data,
no game model

expected return
of every state

game model
known

Reinforcement
Learning
(TD, MC)

Simulation-Based
Search Methods
(MCTS, MIN-MAX)

approximate return function
ap
pr
ox
im

at
e

ga
m
e
m
od

el

Deep Reinforcement Learning

Prediction-based Search

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 6 / 28

mailto:alexander.dockhorn@ovgu.de

Methods for Computational Intelligence in Games
two popular learning approaches:

• learn which actions are good
• learn to anticipate the future

Reinforcement Learning
• performance depends on the

available training time

Simulation-based Search
• performance depends on the

available computation time dur-
ing evaluation Knowledge of Expected Return

K
no
wl
ed
ge

of
Ga

m
e
M
od

el
no return data,
no game model

expected return
of every state

game model
known

Reinforcement
Learning
(TD, MC)

Simulation-Based
Search Methods
(MCTS, MIN-MAX)

approximate return function
ap
pr
ox
im

at
e

ga
m
e
m
od

el

Deep Reinforcement Learning

Prediction-based Search

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 6 / 28

mailto:alexander.dockhorn@ovgu.de

Simulation-Based Search Algorithms

current state

Actionsa1 a2

Ap
pl
yi
ng

Ga
m
e
M
od

el

P(•|a1) = 1 P(•|a2) = 0.5

Input:

• current state
• game-model

Output:

• action with highest win-rate

How to handle games for which:

• the game model is unknown?
• the state cannot be fully observed?

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 7 / 28

mailto:alexander.dockhorn@ovgu.de

Simulation-Based Search Algorithms

current state

Actionsa1 a2

Ap
pl
yi
ng

Ga
m
e
M
od

el

P(•|a1) = 1 P(•|a2) = 0.5

Input:
• current state
• game-model

Output:
• action with highest win-rate

How to handle games for which:

• the game model is unknown?
• the state cannot be fully observed?

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 7 / 28

mailto:alexander.dockhorn@ovgu.de

Simulation-Based Search Algorithms
current state

Actionsa1 a2

Ap
pl
yi
ng

Ga
m
e
M
od

el

P(•|a1) = 1 P(•|a2) = 0.5

Input:
• current state
• game-model

Output:
• action with highest win-rate

How to handle games for which:

• the game model is unknown?
• the state cannot be fully observed?

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 7 / 28

mailto:alexander.dockhorn@ovgu.de

Simulation-Based Search Algorithms
current state

Actionsa1 a2

Ap
pl
yi
ng

Ga
m
e
M
od

el

P(•|a1) = 1 P(•|a2) = 0.5

Input:
• current state
• game-model

Output:
• action with highest win-rate

How to handle games for which:

• the game model is unknown?
• the state cannot be fully observed?

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 7 / 28

mailto:alexander.dockhorn@ovgu.de

Simulation-Based Search Algorithms
current state

Actionsa1 a2

Ap
pl
yi
ng

Ga
m
e
M
od

el

P(•|a1) = 1 P(•|a2) = 0.5

Input:
• current state
• game-model

Output:
• action with highest win-rate

How to handle games for which:

• the game model is unknown?
• the state cannot be fully observed?

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 7 / 28

mailto:alexander.dockhorn@ovgu.de

Simulation-Based Search Algorithms
current state

Actionsa1 a2

Ap
pl
yi
ng

Ga
m
e
M
od

el

P(•|a1) = 1 P(•|a2) = 0.5

Input:
• current state
• game-model

Output:
• action with highest win-rate

How to handle games for which:

• the game model is unknown?
• the state cannot be fully observed?

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 7 / 28

mailto:alexander.dockhorn@ovgu.de

Simulation-Based Search Algorithms
current state

Actionsa1 a2

Ap
pl
yi
ng

Ga
m
e
M
od

el

P(•|a1) = 1 P(•|a2) = 0.5

Input:
• current state
• game-model

Output:
• action with highest win-rate

How to handle games for which:
• the game model is unknown?
• the state cannot be fully observed?

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 7 / 28

mailto:alexander.dockhorn@ovgu.de

Graphical Overview of Contents
Problem Context

Survey on
Algorithms for
Autonomous
Game-Playing

Preliminaries

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 8 / 28

mailto:alexander.dockhorn@ovgu.de

Graphical Overview of Contents
Problem DefinitionProblem Context

Survey on
Algorithms for
Autonomous
Game-Playing

Preliminaries

Unknown
Forward
Model

Partial
State

Observation

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 8 / 28

mailto:alexander.dockhorn@ovgu.de

Graphical Overview of Contents

 Forward Model Learning

End-to-End FM

Decomposed FM

Local FM

Object-based FM

Agent Model

MethodsProblem DefinitionProblem Context

Survey on
Algorithms for
Autonomous
Game-Playing

Preliminaries

Unknown
Forward
Model

Partial
State

Observation

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 8 / 28

mailto:alexander.dockhorn@ovgu.de

Graphical Overview of Contents

 Forward Model Learning

 Predictive State Determinization

End-to-End FM

Decomposed FM

Local FM

Object-based FM

Agent Model

Meta-Game Analysis

Card Sequence
Models

Clustering-based
Models

Agent Model

MethodsProblem DefinitionProblem Context

Survey on
Algorithms for
Autonomous
Game-Playing

Preliminaries

Unknown
Forward
Model

Partial
State

Observation

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 8 / 28

mailto:alexander.dockhorn@ovgu.de

Graphical Overview of Contents

 Forward Model Learning

 Predictive State Determinization

End-to-End FM

Decomposed FM

Local FM

Object-based FM

Agent Model

Model Accuracy

Agent Performance

Transfer Learning

Meta-Game Analysis

Card Sequence
Models

Clustering-based
Models

Agent Model
Model Accuracy

Agent Performance

Methods EvaluationProblem DefinitionProblem Context

Survey on
Algorithms for
Autonomous
Game-Playing

Preliminaries

Unknown
Forward
Model

Partial
State

Observation

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 8 / 28

mailto:alexander.dockhorn@ovgu.de

Graphical Overview of Contents

 Forward Model Learning

 Predictive State Determinization

End-to-End FM

Decomposed FM

Local FM

Object-based FM

Agent Model

Model Accuracy

Agent Performance

Transfer Learning

Meta-Game Analysis

Card Sequence
Models

Clustering-based
Models

Agent Model
Model Accuracy

Agent Performance

Methods EvaluationProblem DefinitionProblem Context

Survey on
Algorithms for
Autonomous
Game-Playing

Preliminaries

Unknown
Forward
Model

Partial
State

Observation

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 8 / 28

mailto:alexander.dockhorn@ovgu.de

Forward Model Learning

Goal: Learn to predict upcoming states of the environment.

Definition: Forward Model
• A forward model fm maps the environment’s state St and the agent’s action At at time

t to the upcoming state St+1 of the environment:
fm : (S ×A)→ S (St , At) 7−→ St+1

• This definition only applies to environment models that fulfil the Markov property.

Markov Property:
• The environment fulfills the Markov property in case the upcoming state is independent

of all states but the present state.
P(St+1 | S0, A0, S1, A1, . . . , St , At) ⇒ P(St+1 | St , At)

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 9 / 28

mailto:alexander.dockhorn@ovgu.de

Forward Model Learning
Goal: Learn to predict upcoming states of the environment.

Definition: Forward Model
• A forward model fm maps the environment’s state St and the agent’s action At at time

t to the upcoming state St+1 of the environment:
fm : (S ×A)→ S (St , At) 7−→ St+1

• This definition only applies to environment models that fulfil the Markov property.

Markov Property:
• The environment fulfills the Markov property in case the upcoming state is independent

of all states but the present state.
P(St+1 | S0, A0, S1, A1, . . . , St , At) ⇒ P(St+1 | St , At)

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 9 / 28

mailto:alexander.dockhorn@ovgu.de

Forward Model Learning
Goal: Learn to predict upcoming states of the environment.

Definition: Forward Model
• A forward model fm maps the environment’s state St and the agent’s action At at time

t to the upcoming state St+1 of the environment:
fm : (S ×A)→ S (St , At) 7−→ St+1

• This definition only applies to environment models that fulfil the Markov property.

Markov Property:
• The environment fulfills the Markov property in case the upcoming state is independent

of all states but the present state.
P(St+1 | S0, A0, S1, A1, . . . , St , At) ⇒ P(St+1 | St , At)

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 9 / 28

mailto:alexander.dockhorn@ovgu.de

Forward Model Learning
Goal: Learn to predict upcoming states of the environment.

Definition: Forward Model
• A forward model fm maps the environment’s state St and the agent’s action At at time

t to the upcoming state St+1 of the environment:
fm : (S ×A)→ S (St , At) 7−→ St+1

• This definition only applies to environment models that fulfil the Markov property.

Markov Property:
• The environment fulfills the Markov property in case the upcoming state is independent

of all states but the present state.
P(St+1 | S0, A0, S1, A1, . . . , St , At) ⇒ P(St+1 | St , At)

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 9 / 28

mailto:alexander.dockhorn@ovgu.de

Forward Model Learning
Goal: Learn to predict upcoming states of the environment.

Definition: Forward Model
• A forward model fm maps the environment’s state St and the agent’s action At at time

t to the upcoming state St+1 of the environment:
fm : (S ×A)→ S (St , At) 7−→ St+1

• This definition only applies to environment models that fulfil the Markov property.

Markov Property:
• The environment fulfills the Markov property in case the upcoming state is independent

of all states but the present state.
P(St+1 | S0, A0, S1, A1, . . . , St , At) ⇒ P(St+1 | St , At)

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 9 / 28

mailto:alexander.dockhorn@ovgu.de

End-To-End Forward Models

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 10 / 28

mailto:alexander.dockhorn@ovgu.de

End-To-End Forward Models
Problem Categorization:

• choose the next state among the entirety of states
• either a classification or regression problem

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 10 / 28

mailto:alexander.dockhorn@ovgu.de

End-To-End Forward Models
Problem Categorization:

• choose the next state among the entirety of states
• either a classification or regression problem

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 10 / 28

Environment’s State

Forward Model

Predicted Environment’s State

mailto:alexander.dockhorn@ovgu.de

End-To-End Forward Models
Problem Categorization:

• choose the next state among the entirety of states
• either a classification or regression problem

Learning a model of the game:
• Gather experience while playing. Each observed

state-transition equals one training example.
• Train a model given all observations.

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 10 / 28

Environment’s State

Forward Model

Predicted Environment’s State

mailto:alexander.dockhorn@ovgu.de

End-To-End Forward Models
Problem Categorization:

• choose the next state among the entirety of states
• either a classification or regression problem

Learning a model of the game:
• Gather experience while playing. Each observed

state-transition equals one training example.
• Train a model given all observations.
⇒ The number of required examples can be dependent

on the complexity of the state and action space

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 10 / 28

Environment’s State

Forward Model

Predicted Environment’s State

mailto:alexander.dockhorn@ovgu.de

End-To-End Forward Models
Problem Categorization:

• choose the next state among the entirety of states
• either a classification or regression problem

Learning a model of the game:
• Gather experience while playing. Each observed

state-transition equals one training example.
• Train a model given all observations.
⇒ The number of required examples can be dependent

on the complexity of the state and action space

The following methods represent attempts to reduce
the complexity of the learning problem.

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 10 / 28

Environment’s State

Forward Model

Predicted Environment’s State

mailto:alexander.dockhorn@ovgu.de

Decomposed Forward Models[1]

Assumptions:
• sensor values can be modelled independently

∀i , j ∈ 1..n : i 6= j ⇒ S(i)
t+1⊥⊥ S(j)

t+1 | St , At

[1] Dockhorn, A., Tippelt, T., & Kruse, R. (2018). Model Decomposition for Forward Model Approximation
A. Dockhorn Prediction-based Search for Autonomous Game-Playing 11 / 28

mailto:alexander.dockhorn@ovgu.de

Decomposed Forward Models[1]

Assumptions:
• sensor values can be modelled independently

∀i , j ∈ 1..n : i 6= j ⇒ S(i)
t+1⊥⊥ S(j)

t+1 | St , At

Learn one sub-model for each observable sensor value
fm

i
: (St , At) 7−→ S(i)

t+1

[1] Dockhorn, A., Tippelt, T., & Kruse, R. (2018). Model Decomposition for Forward Model Approximation
A. Dockhorn Prediction-based Search for Autonomous Game-Playing 11 / 28

Environment’s State

(1)
S

Predicted Environment’s State

t

(2)
St

(3)
St

(4)
St

(n)
St

...

(1)
St+1

(2)
S

(3)
S

(4)
S

(n)
S...

t+1 t+1 t+1 t+1

FM FM FMFM FM ...
1 2 3 4 n

mailto:alexander.dockhorn@ovgu.de

Decomposed Forward Models[1]

Assumptions:
• sensor values can be modelled independently

∀i , j ∈ 1..n : i 6= j ⇒ S(i)
t+1⊥⊥ S(j)

t+1 | St , At

Learn one sub-model for each observable sensor value
fm

i
: (St , At) 7−→ S(i)

t+1

Aggregate the result of each sensor value prediction
fm(St , At) = (fm1(St , At), fm2(St , At), . . . , fmn(St , At))

= (S(1)
t+1, S(2)

t+1, . . . , S(n)
t+1) = St+1

[1] Dockhorn, A., Tippelt, T., & Kruse, R. (2018). Model Decomposition for Forward Model Approximation
A. Dockhorn Prediction-based Search for Autonomous Game-Playing 11 / 28

Environment’s State

(1)
S

Predicted Environment’s State

t

(2)
St

(3)
St

(4)
St

(n)
St

...

(1)
St+1

(2)
S

(3)
S

(4)
S

(n)
S...

t+1 t+1 t+1 t+1

FM FM FMFM FM ...
1 2 3 4 n

mailto:alexander.dockhorn@ovgu.de

Modelling Local Dependencies
Assumptions:

• structured representation of the state
• requires a similarity or distance function for sensor values
• semantic of a sensor-value is independent of its index

Tile-based Representation (of Video Games):
• a state can be represented as a matrix T of size n ×m

T =

 T (1, 1) . . . T (1, m)
...

T (n, 1) . . . T (n, m)


• T (x , y) specifies the observed tile at position (x , y)

Game-State of Sokoban

Tilemap Components

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 12 / 28

mailto:alexander.dockhorn@ovgu.de

Modelling Local Dependencies
Assumptions:

• structured representation of the state
• requires a similarity or distance function for sensor values
• semantic of a sensor-value is independent of its index

Tile-based Representation (of Video Games):
• a state can be represented as a matrix T of size n ×m

T =

 T (1, 1) . . . T (1, m)
...

T (n, 1) . . . T (n, m)


• T (x , y) specifies the observed tile at position (x , y)

Game-State of Sokoban

Tilemap Components

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 12 / 28

mailto:alexander.dockhorn@ovgu.de

Modelling Local Dependencies
Assumptions:

• structured representation of the state
• requires a similarity or distance function for sensor values
• semantic of a sensor-value is independent of its index

Tile-based Representation (of Video Games):
• a state can be represented as a matrix T of size n ×m

T =

 T (1, 1) . . . T (1, m)
...

T (n, 1) . . . T (n, m)


• T (x , y) specifies the observed tile at position (x , y)

Game-State of Sokoban

Tilemap Components

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 12 / 28

mailto:alexander.dockhorn@ovgu.de

Modelling Local Dependencies
Assumptions:

• structured representation of the state
• requires a similarity or distance function for sensor values
• semantic of a sensor-value is independent of its index

Tile-based Representation (of Video Games):
• a state can be represented as a matrix T of size n ×m

T =

 T (1, 1) . . . T (1, m)
...

T (n, 1) . . . T (n, m)


• T (x , y) specifies the observed tile at position (x , y)

Game-State of Sokoban

Tilemap Components

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 12 / 28

mailto:alexander.dockhorn@ovgu.de

Local Transition Function
Decompose the forward model into one sub-model per tile:

fm
x ,y

:
(
N(x , y)t , At

)
7−→ T (x , y)t+1

• N(x , y)t describes the local neighbourhood of tile T (x , y) at time t
• it contains each tile with distance less than a given threshold

Game-State of Sokoban Local Neighborhood

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 13 / 28

mailto:alexander.dockhorn@ovgu.de

Local Transition Function
Decompose the forward model into one sub-model per tile:

fm
x ,y

:
(
N(x , y)t , At

)
7−→ T (x , y)t+1

• N(x , y)t describes the local neighbourhood of tile T (x , y) at time t
• it contains each tile with distance less than a given threshold

Game-State of Sokoban Local Neighborhood

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 13 / 28

mailto:alexander.dockhorn@ovgu.de

Local Transition Function
Decompose the forward model into one sub-model per tile:

fm
x ,y

:
(
N(x , y)t , At

)
7−→ T (x , y)t+1

• N(x , y)t describes the local neighbourhood of tile T (x , y) at time t
• it contains each tile with distance less than a given threshold

Game-State of Sokoban

Local Neighborhood

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 13 / 28

mailto:alexander.dockhorn@ovgu.de

Local Transition Function
Decompose the forward model into one sub-model per tile:

fm
x ,y

:
(
N(x , y)t , At

)
7−→ T (x , y)t+1

• N(x , y)t describes the local neighbourhood of tile T (x , y) at time t
• it contains each tile with distance less than a given threshold

Game-State of Sokoban Local Neighborhood
A. Dockhorn Prediction-based Search for Autonomous Game-Playing 13 / 28

mailto:alexander.dockhorn@ovgu.de

Local Transition Function
Decompose the forward model into one sub-model per tile:

fm
x ,y

:
(
N(x , y)t , At

)
7−→ T (x , y)t+1

• N(x , y)t describes the local neighbourhood of tile T (x , y) at time t
• it contains each tile with distance less than a given threshold

Game-State of Sokoban Local Neighborhood Extracted Pattern
A. Dockhorn Prediction-based Search for Autonomous Game-Playing 13 / 28

mailto:alexander.dockhorn@ovgu.de

Local Transition Function
Decompose the forward model into one sub-model per tile:

fm
x ,y

:
(
N(x , y)t , At

)
7−→ T (x , y)t+1

• N(x , y)t describes the local neighbourhood of tile T (x , y) at time t
• it contains each tile with distance less than a given threshold

Game-State of Sokoban Local Neighborhood Extracted Patterns
A. Dockhorn Prediction-based Search for Autonomous Game-Playing 13 / 28

mailto:alexander.dockhorn@ovgu.de

Local Forward Model
Predict the next state by predicting each tile

Tt+1 =

 fm1,1(N(1, 1), At) . . . fm1,m(N(1, m), At)
...

fmn,1(N(n, 1), At) . . . fmn,m(N(n, m), At)



In case the semantic of a tile is independent of its
position, only a single model needs to be learned

Advantage: higher sampling efficiency
• each observed state transition consists of one ob-

served pattern per tile (in total: n ×m patterns)

Environment’s State

Local Forward Model
(separate calls)

(1)
S

Predicted Environment’s State

t

(2)
St

(3)
St

(4)
St

(n)
St

...

(1)
St+1

(2)
S

(3)
S

(4)
S

(n)
S...

t+1 t+1 t+1 t+1

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 14 / 28

mailto:alexander.dockhorn@ovgu.de

Local Forward Model
Predict the next state by predicting each tile

Tt+1 =

 fm1,1(N(1, 1), At) . . . fm1,m(N(1, m), At)
...

fmn,1(N(n, 1), At) . . . fmn,m(N(n, m), At)


In case the semantic of a tile is independent of its
position, only a single model needs to be learned

Advantage: higher sampling efficiency
• each observed state transition consists of one ob-

served pattern per tile (in total: n ×m patterns)

Environment’s State

Local Forward Model
(separate calls)

(1)
S

Predicted Environment’s State

t

(2)
St

(3)
St

(4)
St

(n)
St

...

(1)
St+1

(2)
S

(3)
S

(4)
S

(n)
S...

t+1 t+1 t+1 t+1

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 14 / 28

mailto:alexander.dockhorn@ovgu.de

Local Forward Model
Predict the next state by predicting each tile

Tt+1 =

 fm1,1(N(1, 1), At) . . . fm1,m(N(1, m), At)
...

fmn,1(N(n, 1), At) . . . fmn,m(N(n, m), At)


In case the semantic of a tile is independent of its
position, only a single model needs to be learned

Advantage: higher sampling efficiency
• each observed state transition consists of one ob-

served pattern per tile (in total: n ×m patterns)

Environment’s State

Local Forward Model
(separate calls)

(1)
S

Predicted Environment’s State

t

(2)
St

(3)
St

(4)
St

(n)
St

...

(1)
St+1

(2)
S

(3)
S

(4)
S

(n)
S...

t+1 t+1 t+1 t+1

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 14 / 28

mailto:alexander.dockhorn@ovgu.de

Local Forward Model
Predict the next state by predicting each tile

Tt+1 =

 fm1,1(N(1, 1), At) . . . fm1,m(N(1, m), At)
...

fmn,1(N(n, 1), At) . . . fmn,m(N(n, m), At)


In case the semantic of a tile is independent of its
position, only a single model needs to be learned

Advantage: higher sampling efficiency
• each observed state transition consists of one ob-

served pattern per tile (in total: n ×m patterns)

Environment’s State

Local Forward Model
(separate calls)

(1)
S

Predicted Environment’s State

t

(2)
St

(3)
St

(4)
St

(n)
St

...

(1)
St+1

(2)
S

(3)
S

(4)
S

(n)
S...

t+1 t+1 t+1 t+1

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 14 / 28

mailto:alexander.dockhorn@ovgu.de

Modelling Entities of a Game I/II

Measuring the importance of each tile in the local neigh-
borhood indicates a high importance of the center tile.
⇒ instead of modelling the change of each position,
model the change of represented objects

Object-based Representation
• the state consists of multiple entities of which

several attributes can be observed

Feature Importance of
Neighborhood Tiles

S = (S(1), S(2), . . . , S(n))
= (S(1,1), . . . , S(1,i)︸ ︷︷ ︸

Object 1

, S(2,1), . . . , S(2,j)︸ ︷︷ ︸
Object 2

, . . . , S(m,1), . . . , S(m,k)︸ ︷︷ ︸
Object m

)

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 15 / 28

mailto:alexander.dockhorn@ovgu.de

Modelling Entities of a Game I/II

Measuring the importance of each tile in the local neigh-
borhood indicates a high importance of the center tile.
⇒ instead of modelling the change of each position,
model the change of represented objects

Object-based Representation
• the state consists of multiple entities of which

several attributes can be observed
Feature Importance of
Neighborhood Tiles

S = (S(1), S(2), . . . , S(n))
= (S(1,1), . . . , S(1,i)︸ ︷︷ ︸

Object 1

, S(2,1), . . . , S(2,j)︸ ︷︷ ︸
Object 2

, . . . , S(m,1), . . . , S(m,k)︸ ︷︷ ︸
Object m

)

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 15 / 28

mailto:alexander.dockhorn@ovgu.de

Modelling Entities of a Game I/II

Measuring the importance of each tile in the local neigh-
borhood indicates a high importance of the center tile.
⇒ instead of modelling the change of each position,
model the change of represented objects

Object-based Representation
• the state consists of multiple entities of which

several attributes can be observed
Feature Importance of
Neighborhood Tiles

S = (S(1), S(2), . . . , S(n))
= (S(1,1), . . . , S(1,i)︸ ︷︷ ︸

Object 1

, S(2,1), . . . , S(2,j)︸ ︷︷ ︸
Object 2

, . . . , S(m,1), . . . , S(m,k)︸ ︷︷ ︸
Object m

)

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 15 / 28

mailto:alexander.dockhorn@ovgu.de

Modelling Entities of a Game II/II

Assumptions:
• game components are considered to represent indepently acting entities
• similar looking objects exhibit similar behavior

Create one model for each entity or entity type

fm
i

:
(
(S(i ,1)

t , . . . , S(i ,k)
t), At

)
7−→ (S(i ,1)

t+1 , . . . , S(i ,k)
t+1)

Complex entities can be modelled using a decomposed forward model
• create one model for each observable sensor value

fm
i ,j

:
(
(S(i ,1)

t , . . . , S(i ,k)
t), At

)
7−→ S(i ,j)

t+1

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 16 / 28

mailto:alexander.dockhorn@ovgu.de

Modelling Entities of a Game II/II

Assumptions:
• game components are considered to represent indepently acting entities
• similar looking objects exhibit similar behavior

Create one model for each entity or entity type

fm
i

:
(
(S(i ,1)

t , . . . , S(i ,k)
t), At

)
7−→ (S(i ,1)

t+1 , . . . , S(i ,k)
t+1)

Complex entities can be modelled using a decomposed forward model
• create one model for each observable sensor value

fm
i ,j

:
(
(S(i ,1)

t , . . . , S(i ,k)
t), At

)
7−→ S(i ,j)

t+1

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 16 / 28

mailto:alexander.dockhorn@ovgu.de

Modelling Entities of a Game II/II

Assumptions:
• game components are considered to represent indepently acting entities
• similar looking objects exhibit similar behavior

Create one model for each entity or entity type

fm
i

:
(
(S(i ,1)

t , . . . , S(i ,k)
t), At

)
7−→ (S(i ,1)

t+1 , . . . , S(i ,k)
t+1)

Complex entities can be modelled using a decomposed forward model
• create one model for each observable sensor value

fm
i ,j

:
(
(S(i ,1)

t , . . . , S(i ,k)
t), At

)
7−→ S(i ,j)

t+1

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 16 / 28

mailto:alexander.dockhorn@ovgu.de

Object-based Forward Model
Aggregate the prediction of each object and its associated sensor values:

fm(St , At) = (fm
1

(St , At), . . . , fm
n

(St , At))

= ((fm
1,1

((S(1,1)
t , . . . , S(1,k)

t), At), . . . , fm
m,k

((S(m,1)
t , . . . , S(m,k′)

t), At)))

= (S(1)
t+1, S(2)

t+1, . . . , S(n)
t+1) = St+1

Environment State

Forward Model Environment

Future Environment State

Environment State

Forward Model Environment

Future Environment State

Independently Acting Objects of the
Environment’s State

Player t 1st Enemy t 2nd Enemy t

Forward
Model
Player

Forward
Model

1st Enemy

Forward
Model

2nd Enemy

2nd Enemy t+1

Future Objects of the
Environment’s State

Player t+1 1st Enemy t+1

Independently Acting Objects of the
Environment’s State

Player t 1st Enemy t 2nd Enemy t

Forward
Model
Player

Forward
Model

1st Enemy

Forward
Model

2nd Enemy

2nd Enemy t+1

Future Objects of the
Environment’s State

Player t+1 1st Enemy t+1

Independently Acting Objects of the
Environment’s State

Player t 1st Enemy t 2nd Enemy t

Forward
Model
Player

Forward
Model
Enemy

2nd Enemy t+1

Future Objects of the
Environment’s State

Player t+1 1st Enemy t+1

Independently Acting Objects of the
Environment’s State

Player t 1st Enemy t 2nd Enemy t

Forward
Model
Player

Forward
Model
Enemy

2nd Enemy t+1

Future Objects of the
Environment’s State

Player t+1 1st Enemy t+1

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 17 / 28

mailto:alexander.dockhorn@ovgu.de

Object-based Forward Model
Aggregate the prediction of each object and its associated sensor values:

fm(St , At) = (fm
1

(St , At), . . . , fm
n

(St , At))

= ((fm
1,1

((S(1,1)
t , . . . , S(1,k)

t), At), . . . , fm
m,k

((S(m,1)
t , . . . , S(m,k′)

t), At)))

= (S(1)
t+1, S(2)

t+1, . . . , S(n)
t+1) = St+1

Environment State

Forward Model Environment

Future Environment State

Environment State

Forward Model Environment

Future Environment State

Independently Acting Objects of the
Environment’s State

Player t 1st Enemy t 2nd Enemy t

Forward
Model
Player

Forward
Model

1st Enemy

Forward
Model

2nd Enemy

2nd Enemy t+1

Future Objects of the
Environment’s State

Player t+1 1st Enemy t+1

Independently Acting Objects of the
Environment’s State

Player t 1st Enemy t 2nd Enemy t

Forward
Model
Player

Forward
Model

1st Enemy

Forward
Model

2nd Enemy

2nd Enemy t+1

Future Objects of the
Environment’s State

Player t+1 1st Enemy t+1

Independently Acting Objects of the
Environment’s State

Player t 1st Enemy t 2nd Enemy t

Forward
Model
Player

Forward
Model
Enemy

2nd Enemy t+1

Future Objects of the
Environment’s State

Player t+1 1st Enemy t+1

Independently Acting Objects of the
Environment’s State

Player t 1st Enemy t 2nd Enemy t

Forward
Model
Player

Forward
Model
Enemy

2nd Enemy t+1

Future Objects of the
Environment’s State

Player t+1 1st Enemy t+1

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 17 / 28

mailto:alexander.dockhorn@ovgu.de

Object-based Forward Model
Aggregate the prediction of each object and its associated sensor values:

fm(St , At) = (fm
1

(St , At), . . . , fm
n

(St , At))

= ((fm
1,1

((S(1,1)
t , . . . , S(1,k)

t), At), . . . , fm
m,k

((S(m,1)
t , . . . , S(m,k′)

t), At)))

= (S(1)
t+1, S(2)

t+1, . . . , S(n)
t+1) = St+1

Environment State

Forward Model Environment

Future Environment State

Environment State

Forward Model Environment

Future Environment State

Independently Acting Objects of the
Environment’s State

Player t 1st Enemy t 2nd Enemy t

Forward
Model
Player

Forward
Model

1st Enemy

Forward
Model

2nd Enemy

2nd Enemy t+1

Future Objects of the
Environment’s State

Player t+1 1st Enemy t+1

Independently Acting Objects of the
Environment’s State

Player t 1st Enemy t 2nd Enemy t

Forward
Model
Player

Forward
Model

1st Enemy

Forward
Model

2nd Enemy

2nd Enemy t+1

Future Objects of the
Environment’s State

Player t+1 1st Enemy t+1

Independently Acting Objects of the
Environment’s State

Player t 1st Enemy t 2nd Enemy t

Forward
Model
Player

Forward
Model
Enemy

2nd Enemy t+1

Future Objects of the
Environment’s State

Player t+1 1st Enemy t+1

Independently Acting Objects of the
Environment’s State

Player t 1st Enemy t 2nd Enemy t

Forward
Model
Player

Forward
Model
Enemy

2nd Enemy t+1

Future Objects of the
Environment’s State

Player t+1 1st Enemy t+1

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 17 / 28

mailto:alexander.dockhorn@ovgu.de

Object-based Forward Model
Aggregate the prediction of each object and its associated sensor values:

fm(St , At) = (fm
1

(St , At), . . . , fm
n

(St , At))

= ((fm
1,1

((S(1,1)
t , . . . , S(1,k)

t), At), . . . , fm
m,k

((S(m,1)
t , . . . , S(m,k′)

t), At)))

= (S(1)
t+1, S(2)

t+1, . . . , S(n)
t+1) = St+1

Environment State

Forward Model Environment

Future Environment State

Environment State

Forward Model Environment

Future Environment State

Independently Acting Objects of the
Environment’s State

Player t 1st Enemy t 2nd Enemy t

Forward
Model
Player

Forward
Model

1st Enemy

Forward
Model

2nd Enemy

2nd Enemy t+1

Future Objects of the
Environment’s State

Player t+1 1st Enemy t+1

Independently Acting Objects of the
Environment’s State

Player t 1st Enemy t 2nd Enemy t

Forward
Model
Player

Forward
Model

1st Enemy

Forward
Model

2nd Enemy

2nd Enemy t+1

Future Objects of the
Environment’s State

Player t+1 1st Enemy t+1

Independently Acting Objects of the
Environment’s State

Player t 1st Enemy t 2nd Enemy t

Forward
Model
Player

Forward
Model
Enemy

2nd Enemy t+1

Future Objects of the
Environment’s State

Player t+1 1st Enemy t+1

Independently Acting Objects of the
Environment’s State

Player t 1st Enemy t 2nd Enemy t

Forward
Model
Player

Forward
Model
Enemy

2nd Enemy t+1

Future Objects of the
Environment’s State

Player t+1 1st Enemy t+1

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 17 / 28

mailto:alexander.dockhorn@ovgu.de

Object-based Forward Model
Aggregate the prediction of each object and its associated sensor values:

fm(St , At) = (fm
1

(St , At), . . . , fm
n

(St , At))

= ((fm
1,1

((S(1,1)
t , . . . , S(1,k)

t), At), . . . , fm
m,k

((S(m,1)
t , . . . , S(m,k′)

t), At)))

= (S(1)
t+1, S(2)

t+1, . . . , S(n)
t+1) = St+1

Environment State

Forward Model Environment

Future Environment State

Environment State

Forward Model Environment

Future Environment State

Independently Acting Objects of the
Environment’s State

Player t 1st Enemy t 2nd Enemy t

Forward
Model
Player

Forward
Model

1st Enemy

Forward
Model

2nd Enemy

2nd Enemy t+1

Future Objects of the
Environment’s State

Player t+1 1st Enemy t+1

Independently Acting Objects of the
Environment’s State

Player t 1st Enemy t 2nd Enemy t

Forward
Model
Player

Forward
Model

1st Enemy

Forward
Model

2nd Enemy

2nd Enemy t+1

Future Objects of the
Environment’s State

Player t+1 1st Enemy t+1

Independently Acting Objects of the
Environment’s State

Player t 1st Enemy t 2nd Enemy t

Forward
Model
Player

Forward
Model
Enemy

2nd Enemy t+1

Future Objects of the
Environment’s State

Player t+1 1st Enemy t+1

Independently Acting Objects of the
Environment’s State

Player t 1st Enemy t 2nd Enemy t

Forward
Model
Player

Forward
Model
Enemy

2nd Enemy t+1

Future Objects of the
Environment’s State

Player t+1 1st Enemy t+1

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 17 / 28

mailto:alexander.dockhorn@ovgu.de

Comparison of Proposed Models

Environment’s State

Forward Model

Predicted Environment’s State

End-to-End FM

Environment’s State

(1)
S

Predicted Environment’s State

t

(2)
St

(3)
St

(4)
St

(n)
St

...

(1)
St+1

(2)
S

(3)
S

(4)
S

(n)
S...

t+1 t+1 t+1 t+1

FM FM FMFM FM ...
1 2 3 4 n

Decomposed FM

Environment’s State

Local Forward Model
(separate calls)

(1)
S

Predicted Environment’s State

t

(2)
St

(3)
St

(4)
St

(n)
St

...

(1)
St+1

(2)
S

(3)
S

(4)
S

(n)
S...

t+1 t+1 t+1 t+1

Local FM

Environment’s State

Player t 1st Enemy t 2nd Enemy t

Forward
Model
Player

Forward
Model
Enemy

Predicted Environment’s State

Player t+1

Environment’s State

Player t 1st Enemy t 2nd Enemy t

Forward
Model
Player

Forward
Model
Enemy

Predicted Environment’s State

Player t+1 1st Enemy t+1 2nd Enemy t+1

Object-based FM

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 18 / 28

mailto:alexander.dockhorn@ovgu.de

Comparison of Proposed Models

Qualitative comparison of proposed forward models architectures;

(+) well suited, (~) neutral, (—) poorly suited

Forward Model #Models Model Interpret- Transfer
Complexity ability across levels

End-To-End + — — —
Decomposed — ~ ~ —
Local + + + +
Object-based ~ ~ + +

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 18 / 28

mailto:alexander.dockhorn@ovgu.de

Comparison of Proposed Models

Qualitative comparison of proposed forward models architectures;

(+) well suited, (~) neutral, (—) poorly suited

Forward Model #Models Model Interpret- Transfer
Complexity ability across levels

End-To-End + — — —
Decomposed — ~ ~ —
Local + + + +
Object-based ~ ~ + +

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 18 / 28

mailto:alexander.dockhorn@ovgu.de

Comparison of Proposed Models

Qualitative comparison of proposed forward models architectures;

(+) well suited, (~) neutral, (—) poorly suited

Forward Model #Models Model Interpret- Transfer
Complexity ability across levels

End-To-End + — — —
Decomposed — ~ ~ —
Local + + + +
Object-based ~ ~ + +

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 18 / 28

mailto:alexander.dockhorn@ovgu.de

Comparison of Proposed Models

Qualitative comparison of proposed forward models architectures;

(+) well suited, (~) neutral, (—) poorly suited

Forward Model #Models Model Interpret- Transfer
Complexity ability across levels

End-To-End + — — —
Decomposed — ~ ~ —
Local + + + +
Object-based ~ ~ + +

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 18 / 28

mailto:alexander.dockhorn@ovgu.de

Comparison of Proposed Models

Qualitative comparison of proposed forward models architectures;

(+) well suited, (~) neutral, (—) poorly suited

Forward Model #Models Model Interpret- Transfer
Complexity ability across levels

End-To-End + — — —
Decomposed — ~ ~ —
Local + + + +
Object-based ~ ~ + +

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 18 / 28

mailto:alexander.dockhorn@ovgu.de

Prediction-based Search

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 19 / 28

mailto:alexander.dockhorn@ovgu.de

Prediction-based Search

observe forward model
input patterns

observe changes in
contained objects and

reward

current state

previous state

forward model

score model

score model
training data

forward model
training data

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 19 / 28

mailto:alexander.dockhorn@ovgu.de

Prediction-based Search

prediction-based searchprediction-based search

observe forward model
input patterns

observe changes in
contained objects and

reward

current state

predicted state

previous state

forward model

score model

score model
training data

forward model
training data

selected action

predict states
using forward model

predict reward
using score model

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 19 / 28

mailto:alexander.dockhorn@ovgu.de

Prediction-based Search

prediction-based searchprediction-based search

observe forward model
input patterns

observe changes in
contained objects and

reward

current state

predicted state

previous state

measure accuracy of
forward model

if model is inaccurate,
update model

forward model

score model

score model
training data

forward model
training data

selected action

apply action
to environment

predict states
using forward model

predict reward
using score modeland observe

next state

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 19 / 28

mailto:alexander.dockhorn@ovgu.de

Evaluation Setup I/II

The evaluation is based on 30 games of the General Video Game AI (GVGAI) framework

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 20 / 28

mailto:alexander.dockhorn@ovgu.de

Evaluation Setup I/II

The evaluation is based on 30 games of the General Video Game AI (GVGAI) framework

Varying Game Characteristics:
• types and number of NPCs
• use of a ressource system
• reward style (dense/sparse)
• the number and types of termination conditions
• determinism vs. non-determinism
• the number of actions available

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 20 / 28

mailto:alexander.dockhorn@ovgu.de

Evaluation Setup II/II

Local and Object-based Forward Models (LFM/OBFM) have been used in conjunction with:

• Breadth First Search (BFS)
• Rolling Horizon Evoluationary Algorithm (RHEA)
• Monte Carlo Tree Search (MCTS)

Trained agents are compared to a random agent
• in previous research competitions no agent performed significantly better

Scenarios for Evaluating the Game-Playing Performance
• Constant Model
• Continuous-Learning
• Transfer-Learning

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 21 / 28

mailto:alexander.dockhorn@ovgu.de

Evaluation Setup II/II

Local and Object-based Forward Models (LFM/OBFM) have been used in conjunction with:
• Breadth First Search (BFS)
• Rolling Horizon Evoluationary Algorithm (RHEA)
• Monte Carlo Tree Search (MCTS)

Trained agents are compared to a random agent
• in previous research competitions no agent performed significantly better

Scenarios for Evaluating the Game-Playing Performance
• Constant Model
• Continuous-Learning
• Transfer-Learning

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 21 / 28

mailto:alexander.dockhorn@ovgu.de

Evaluation Setup II/II

Local and Object-based Forward Models (LFM/OBFM) have been used in conjunction with:
• Breadth First Search (BFS)
• Rolling Horizon Evoluationary Algorithm (RHEA)
• Monte Carlo Tree Search (MCTS)

Trained agents are compared to a random agent
• in previous research competitions no agent performed significantly better

Scenarios for Evaluating the Game-Playing Performance
• Constant Model
• Continuous-Learning
• Transfer-Learning

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 21 / 28

mailto:alexander.dockhorn@ovgu.de

Evaluation Setup II/II

Local and Object-based Forward Models (LFM/OBFM) have been used in conjunction with:
• Breadth First Search (BFS)
• Rolling Horizon Evoluationary Algorithm (RHEA)
• Monte Carlo Tree Search (MCTS)

Trained agents are compared to a random agent
• in previous research competitions no agent performed significantly better

Scenarios for Evaluating the Game-Playing Performance
• Constant Model
• Continuous-Learning
• Transfer-Learning

Scenarios for Evaluating the Game-Playing Performance
• Constant Model
• Continuous-Learning
• Transfer-Learning

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 21 / 28

mailto:alexander.dockhorn@ovgu.de

Evaluation Setup II/II

Local and Object-based Forward Models (LFM/OBFM) have been used in conjunction with:
• Breadth First Search (BFS)
• Rolling Horizon Evoluationary Algorithm (RHEA)
• Monte Carlo Tree Search (MCTS)

Trained agents are compared to a random agent
• in previous research competitions no agent performed significantly better

Scenarios for Evaluating the Game-Playing Performance
• Constant Model
• Continuous-Learning
• Transfer-Learning

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 21 / 28

mailto:alexander.dockhorn@ovgu.de

Learning a Constant Forward Model for each Game
Data Set Generation

• collection of observed state transitions of a random agent
• all 5 levels were played 10 times for a maximum of 200 ticks each
• 9 different local neighborhood patterns were extracted (one data set each)

Accuracy Evaluation and Model Selection
• evaluation of 5 classifiers, multiple parameters

Nea
res

t

Neig
hb

ors
Deci

sio
n

Tre
e

Ran
do

m

For
est

Ada
Boo

st
Naiv

e

Bay
es

0.0

0.2

0.4

0.6

0.8

1.0

Cros
s

Pa
tte

rn
1 Cros

s

Pa
tte

rn
2 Cros

s

Pa
tte

rn
3

Sq
ua

re

Pa
tte

rn
1

Sq
ua

re

Pa
tte

rn
2

Sq
ua

re

Pa
tte

rn
3

Diam
on

d

Pa
tte

rn
1

Diam
on

d

Pa
tte

rn
2

Diam
on

d

Pa
tte

rn
3

0.0

0.2

0.4

0.6

0.8

1.0

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 22 / 28

mailto:alexander.dockhorn@ovgu.de

Learning a Constant Forward Model for each Game
Data Set Generation

• collection of observed state transitions of a random agent
• all 5 levels were played 10 times for a maximum of 200 ticks each
• 9 different local neighborhood patterns were extracted (one data set each)

Accuracy Evaluation and Model Selection
• evaluation of 5 classifiers, multiple parameters

Nea
res

t

Neig
hb

ors
Deci

sio
n

Tre
e

Ran
do

m

For
est

Ada
Boo

st
Naiv

e

Bay
es

0.0

0.2

0.4

0.6

0.8

1.0

Cros
s

Pa
tte

rn
1 Cros

s

Pa
tte

rn
2 Cros

s

Pa
tte

rn
3

Sq
ua

re

Pa
tte

rn
1

Sq
ua

re

Pa
tte

rn
2

Sq
ua

re

Pa
tte

rn
3

Diam
on

d

Pa
tte

rn
1

Diam
on

d

Pa
tte

rn
2

Diam
on

d

Pa
tte

rn
3

0.0

0.2

0.4

0.6

0.8

1.0

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 22 / 28

mailto:alexander.dockhorn@ovgu.de

Learning a Constant Forward Model for each Game
Data Set Generation

• collection of observed state transitions of a random agent
• all 5 levels were played 10 times for a maximum of 200 ticks each
• 9 different local neighborhood patterns were extracted (one data set each)

Accuracy Evaluation and Model Selection
• evaluation of 5 classifiers, multiple parameters

Nea
res

t

Neig
hb

ors
Deci

sio
n

Tre
e

Ran
do

m

For
est

Ada
Boo

st
Naiv

e

Bay
es

0.0

0.2

0.4

0.6

0.8

1.0

Cros
s

Pa
tte

rn
1 Cros

s

Pa
tte

rn
2 Cros

s

Pa
tte

rn
3

Sq
ua

re

Pa
tte

rn
1

Sq
ua

re

Pa
tte

rn
2

Sq
ua

re

Pa
tte

rn
3

Diam
on

d

Pa
tte

rn
1

Diam
on

d

Pa
tte

rn
2

Diam
on

d

Pa
tte

rn
3

0.0

0.2

0.4

0.6

0.8

1.0

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 22 / 28

mailto:alexander.dockhorn@ovgu.de

Evaluating Game-Playing Performance
agents are ranked according to their:

• average win-rate, average score, average ticks of won and lost games
• results are clustered to find groups of games in which the agent performs similar

the
sn

ow
man

su
rro

und

ch
ips

ch
all

en
ge

the
cit

ad
el

lab
yri

nth
du

al

ice
an

dfi
re

lab
yri

nth

col
ou

res
ca

pe

ga
rba

gec
oll

ect
or

de
cep

tiz
eld

a

de
cep

tic
oin

s

pa
int

er

isl
an

ds

ca
tap

ults

hu
ng

ryb
ird

s

esc
ap

e

fire
man

vor
tex

wate
rga

me

wha
ck

am
ole

ter
cio

rea
lso

ko
ba

n
ba

it

ch
ain

rea
cti

on

clu
ste

rs

sh
ipw

rec
k

ru
n

sok
ob

an
ch

as
e

do
ork

ob
an

0

2

4

6

8

10

12

sparse reward, maze-like, long-term planning, randomness and ressources, puzzles

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 23 / 28

mailto:alexander.dockhorn@ovgu.de

Evaluating Game-Playing Performance
agents are ranked according to their:

• average win-rate, average score, average ticks of won and lost games
• results are clustered to find groups of games in which the agent performs similar

the
sn

ow
man

su
rro

und

ch
ips

ch
all

en
ge

the
cit

ad
el

lab
yri

nth
du

al

ice
an

dfi
re

lab
yri

nth

col
ou

res
ca

pe

ga
rba

gec
oll

ect
or

de
cep

tiz
eld

a

de
cep

tic
oin

s

pa
int

er

isl
an

ds

ca
tap

ults

hu
ng

ryb
ird

s

esc
ap

e

fire
man

vor
tex

wate
rga

me

wha
ck

am
ole

ter
cio

rea
lso

ko
ba

n
ba

it

ch
ain

rea
cti

on

clu
ste

rs

sh
ipw

rec
k

ru
n

sok
ob

an
ch

as
e

do
ork

ob
an

0

2

4

6

8

10

12

sparse reward, maze-like, long-term planning, randomness and ressources, puzzles
A. Dockhorn Prediction-based Search for Autonomous Game-Playing 23 / 28

mailto:alexander.dockhorn@ovgu.de

Detailed Game Results
Results on Maze-Like Games

Rank Comparison:
BFS = MCTS > RHEA > Random
LFM > OBFM > Random

all effects are local
decepticoins, deceptizelda and painter in-
volve spawning elements, which OBFM
cannot model

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 24 / 28

mailto:alexander.dockhorn@ovgu.de

Detailed Game Results
Results on Puzzle Games

Rank Comparison:
BFS > MCTS > RHEA > Random
OBFM > LFM > Random

most but not all effects are local
(e.g. Doorkoban)

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 24 / 28

mailto:alexander.dockhorn@ovgu.de

Detailed Game Results
Results on Games with Sparse Reward

Rank Comparison:
Random > RHEA > BFS = MCTS
Random > OBFM = LFM

rare rewards hinder in agent in distinguish-
ing good and bad actions
more training data is required to create a
reliable model

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 24 / 28

mailto:alexander.dockhorn@ovgu.de

Aggregated Results: Game-Playing Performance
Aggregated ranks over all tested games and final score per agent

Agents Rank Formula-1
1st 2nd 3rd 4th 5th 6th 7th Score

Random 4 0 1 3 3 4 15 303

LFM
BFS 10 5 4 4 2 2 3 502
RHEA 3 3 3 8 3 10 0 380
MCTS 5 3 8 4 2 4 4 423

OBFM
BFS 6 8 2 4 4 1 5 450
RHEA 3 5 6 2 10 4 0 411
MCTS 5 7 4 3 5 4 2 441

Formula-1 Scoring System: 1st = 25, 2nd = 18, 3rd = 15, 4th = 12,
5th = 10, 6th = 8, 7th = 6

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 25 / 28

mailto:alexander.dockhorn@ovgu.de

Aggregated Results: Game-Playing Performance
Aggregated ranks over all tested games and final score per agent

Agents Rank Formula-1
1st 2nd 3rd 4th 5th 6th 7th Score

Random 4 0 1 3 3 4 15 303

LFM
BFS 10 5 4 4 2 2 3 502
RHEA 3 3 3 8 3 10 0 380
MCTS 5 3 8 4 2 4 4 423

OBFM
BFS 6 8 2 4 4 1 5 450
RHEA 3 5 6 2 10 4 0 411
MCTS 5 7 4 3 5 4 2 441

Formula-1 Scoring System: 1st = 25, 2nd = 18, 3rd = 15, 4th = 12,
5th = 10, 6th = 8, 7th = 6

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 25 / 28

mailto:alexander.dockhorn@ovgu.de

Conclusion
Simulation-based search requires extensions to be used in case:

• the environment’s forward model is inaccessible
• the environment’s state is partial observable

 Forward Model Learning

 Predictive State Determinization

End-to-End FM

Decomposed FM

Local FM

Object-based FM

Agent Model

Model Accuracy

Agent Performance

Transfer Learning

Meta-Game Analysis

Card Sequence
Models

Clustering-based
Models

Agent Model
Model Accuracy

Agent Performance

Methods EvaluationProblem DefinitionProblem Context

Survey on
Algorithms for
Autonomous
Game-Playing

Preliminaries

Unknown
Forward
Model

Partial
State

Observation

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 26 / 28

mailto:alexander.dockhorn@ovgu.de

Conclusion
Simulation-based search requires extensions to be used in case:

• the environment’s forward model is inaccessible
• the environment’s state is partial observable

 Forward Model Learning

 Predictive State Determinization

End-to-End FM

Decomposed FM

Local FM

Object-based FM

Agent Model

Model Accuracy

Agent Performance

Transfer Learning

Meta-Game Analysis

Card Sequence
Models

Clustering-based
Models

Agent Model
Model Accuracy

Agent Performance

Methods EvaluationProblem DefinitionProblem Context

Survey on
Algorithms for
Autonomous
Game-Playing

Preliminaries

Unknown
Forward
Model

Partial
State

Observation

Environment’s State

Local Forward Model
(separate calls)

(1)
S

Predicted Environment’s State

t

(2)
St

(3)
St

(4)
St

(n)
St

...

(1)
St+1

(2)
S

(3)
S

(4)
S

(n)
S...

t+1 t+1 t+1 t+1

Environment’s State

Player t 1st Enemy t 2nd Enemy t

Forward
Model
Player

Forward
Model
Enemy

Predicted Environment’s State

Player t+1

Environment’s State

Player t 1st Enemy t 2nd Enemy t

Forward
Model
Player

Forward
Model
Enemy

Predicted Environment’s State

Player t+1 1st Enemy t+1 2nd Enemy t+1

Four types of forward models were introduced.
• The underlying independency assumptions reduced the size

of the model space and the required training time.
• A prediction-based search agent has been proposed.

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 26 / 28

mailto:alexander.dockhorn@ovgu.de

Conclusion
Simulation-based search requires extensions to be used in case:

• the environment’s forward model is inaccessible
• the environment’s state is partial observable

 Forward Model Learning

 Predictive State Determinization

End-to-End FM

Decomposed FM

Local FM

Object-based FM

Agent Model

Model Accuracy

Agent Performance

Transfer Learning

Meta-Game Analysis

Card Sequence
Models

Clustering-based
Models

Agent Model
Model Accuracy

Agent Performance

Methods EvaluationProblem DefinitionProblem Context

Survey on
Algorithms for
Autonomous
Game-Playing

Preliminaries

Unknown
Forward
Model

Partial
State

Observation

Environment’s State

Local Forward Model
(separate calls)

(1)
S

Predicted Environment’s State

t

(2)
St

(3)
St

(4)
St

(n)
St

...

(1)
St+1

(2)
S

(3)
S

(4)
S

(n)
S...

t+1 t+1 t+1 t+1

Environment’s State

Player t 1st Enemy t 2nd Enemy t

Forward
Model
Player

Forward
Model
Enemy

Predicted Environment’s State

Player t+1

Environment’s State

Player t 1st Enemy t 2nd Enemy t

Forward
Model
Player

Forward
Model
Enemy

Predicted Environment’s State

Player t+1 1st Enemy t+1 2nd Enemy t+1

Four types of forward models were introduced.
• The underlying independency assumptions reduced the size

of the model space and the required training time.
• A prediction-based search agent has been proposed.

Agents were succesfully trained to play GVGAI games.
• trained agents achieved a high state prediction accuracy and

game-playing performance
• learned models can be transferred to unobserved levels

Agents Formula-1
Score

Random 303

LFM
BFS 502
RHEA 380
MCTS 423

OBFM
BFS 450
RHEA 411
MCTS 441

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 26 / 28

mailto:alexander.dockhorn@ovgu.de

State-of-the-Art Proposed Solution

Thank you for your attention!

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 27 / 28

Alexander Dockhorn
alexander.dockhorn@ovgu.de

Otto-von-Guericke University of Magdeburg
Faculty of Computer Science

Institute for Intelligent Cooperating Systems

mailto:alexander.dockhorn@ovgu.de
http://www.is.ovgu.de/Team/Alexander+Dockhorn.html
http://www.ovgu.de/
http://www.fin.ovgu.de/
http://www.iks.ovgu.de/IKS.html

Appendix

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 0 / 28

References

Alexander Dockhorn
alexander.dockhorn@ovgu.de

Otto-von-Guericke University of Magdeburg
Faculty of Computer Science

Institute for Intelligent Cooperating Systems

mailto:alexander.dockhorn@ovgu.de
http://www.is.ovgu.de/Team/Alexander+Dockhorn.html
http://www.ovgu.de/
http://www.fin.ovgu.de/
http://www.iks.ovgu.de/IKS.html

Publications - Forward Model learning I/II
Book Chapter
Alexander Dockhorn, Chris Saxton, and Rudolf Kruse; Association Rule Mining for Unknown Video Games,
A fuzzy dictionary of fuzzy modelling. Common concepts and perspectives, (Accepted), 2020

Journal Paper
Daan Apeldoorn and Alexander Dockhorn; Exception-Tolerant Hierarchical KnowledgeBases for Forward
Model Learning, IEEE Transactions on Games (TOG) (Submitted)

Conference Paper
Alexander Dockhorn and Rudolf Kruse; Forward Model Learning for Motion Control Tasks, 10th IEEE
International Conference on Intelligent Systems IS’20 (Accepted)
Alexander Dockhorn and Simon Lucas; Local Forward Model Learning for GVGAI Games, 2020 IEEE
Conference on Games (Submitted)

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 1 / 5

mailto:alexander.dockhorn@ovgu.de

Publications - Forward Model learning II/II
Conference Paper
Simon Lucas, Alexander Dockhorn, Vanessa Volz, Chris Bamford, Raluca Gaina, Ivan Bravi, Diego Perez-
Liebana, and Rudolf Kruse; A Local Approach to Forward Model Learning: Results on the Game of Life Game.
In 2019 IEEE Conference on Games (CoG) (pp. 1–8). IEEE.
Alexander Dockhorn, Simon Lucas, Vanessa Volz, Ivan Bravi, Raluca Gaina, and Diego Perez-Liebana;
Learning Local Forward Models on Unforgiving Games. In 2019 IEEE Conference on Games (CoG) (pp. 1–4).
IEEE.
Alexander Dockhorn, Tim Tippelt, and Rudolf Kruse; Model Decomposition for Forward Model Approxima-
tion, IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, November 2018, pp. 1751–1757
Alexander Dockhorn and Daan Apeldoorn; Forward Model Approximation for General Video Game Learning,
2018 IEEE Conference on Computational Intelligence and Games (CIG), IEEE, August 2018, pp. 425-432

Workshop Paper
Alexander Dockhorn and Rudolf Kruse; Detecting Sensor Dependencies for Building Complementary Model
Ensembles, 28. Workshop Computational Intelligence, KIT Publishing, November 2018, pp. 217-233

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 2 / 5

mailto:alexander.dockhorn@ovgu.de

Publications Predictive State-Determinization
Journal Paper
Alexander Dockhorn, Rudolf Kruse; Metagame-based Prediction of Cards via Fuzzy Multiset Clustering,
International Journal of Computational Intelligence Systems (Submitted)

Conference Paper
Alexander Dockhorn, Tony Schwensfeier, Rudolf Kruse; Fuzzy Multiset Clustering for Metagame Analysis,
in Proceedings of the 2019 Conference of the International Fuzzy Systems Association and the European
Society for Fuzzy Logic and Technology (EUSFLAT 2019). Paris, France
Alexander Dockhorn, Max Frick, Ünal Akkaya, and Rudolf Kruse; Predicting Opponent Moves for Improving
Hearthstone AI, 17th International Conference on Information Processing and Management of Uncertainty in
Knowledge-Based Systems (IPMU), Springer International Publishing, May 2018, pp. 621-632
Alexander Dockhorn, Christoph Doell, Matthias Hewelt, and Rudolf Kruse; A decision heuristic for Monte
Carlo tree search doppelkopf agents, IEEE Symposium Series on Computational Intelligence (SSCI), IEEE,
November 2017, pp. 51-58

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 3 / 5

mailto:alexander.dockhorn@ovgu.de

Publications on other Topics I/II
Journal Papers
Pascal Held, Alexander Dockhorn, and Rudolf Kruse; n Merging and Dividing Social Graphs. Journal of
Artificial Intelligence and Soft Computing Research, 5(1), 23–49.

Conference Papers
Alexander Dockhorn and Rudolf Kruse; Combining cooperative and adversarial coevolution in the context
of pac-man, 2017 IEEE Conference on Computational Intelligence and Games (CIG), IEEE, August 2017,
pp. 60-67
Tim Sabsch, Christian Braune, Alexander Dockhorn, and Rudolf Kruse; Using a Multiobjective Genetic
Algorithm for Curve Approximation. In 2017 IEEE Symposium Series on Computational Intelligence (SSCI).
IEEE.
Alexander Dockhorn, Christian Braune, Rudolf Kruse; Variable density based clustering. In 2016 IEEE
Symposium Series on Computational Intelligence (SSCI) (pp. 1–8). IEEE.

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 4 / 5

mailto:alexander.dockhorn@ovgu.de

Publications on other Topics II/II
Conference Papers
Pascal Held, Alexander Dockhorn, Benjamin Krause, and Rudolf Kruse; Clustering Social Networks Using
Competing Ant Hives. In 2015 Second European Network Intelligence Conference (pp. 67–74). IEEE.
Alexander Dockhorn, Christian Braune, and Rudolf Kruse; An Alternating Optimization Approach based on
Hierarchical Adaptations of DBSCAN. In 2015 IEEE Symposium Series on Computational Intelligence (SSCI)
(pp. 749–755).
Pascal Held, Alexander Dockhorn, and Rudolf Kruse; Generating Events for Dynamic Social Network
Simulations. 15th International Conference on Information Processing and Management of Uncertainty in
Knowledge-Based Systems, IPMU 2014.
Pascal Held, Alexander Dockhorn, and Rudolf Kruse; On Merging and Dividing of Barabasi-Albert-graphs.
In 2014 IEEE Symposium on Evolving and Autonomous Learning Systems (EALS) (Vol. 444, pp. 17–24).

Preprints
Alexander Dockhorn, Sanaz Mostaghim; Introducing the Hearthstone-AI Competition, 1–4. Arxiv ID:
1906.04238

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 5 / 5

mailto:alexander.dockhorn@ovgu.de

	Introduction
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	A Short History of Computational Intelligence in Games
	A Short History of Computational Intelligence in Games
	A Short History of Computational Intelligence in Games
	A Short History of Computational Intelligence in Games
	Agent-Environment Interface
	Agent-Environment Interface
	Agent-Environment Interface
	Agent-Environment Interface
	Agent-Environment Interface
	Components of a Game
	Components of a Game
	Components of a Game

	Method Overview
	Methods for Computational Intelligence in Games
	Methods for Computational Intelligence in Games
	Methods for Computational Intelligence in Games
	Methods for Computational Intelligence in Games
	Methods for Computational Intelligence in Games
	Methods for Computational Intelligence in Games
	Methods for Computational Intelligence in Games
	Methods for Computational Intelligence in Games
	Methods for Computational Intelligence in Games
	Methods for Computational Intelligence in Games
	Methods for Computational Intelligence in Games
	Methods for Computational Intelligence in Games
	Methods for Computational Intelligence in Games
	Simulation-Based Search Algorithms
	Simulation-Based Search Algorithms
	Simulation-Based Search Algorithms
	Simulation-Based Search Algorithms
	Simulation-Based Search Algorithms
	Simulation-Based Search Algorithms
	Simulation-Based Search Algorithms

	Graphical Summary
	Graphical Overview of Contents
	Graphical Overview of Contents
	Graphical Overview of Contents
	Graphical Overview of Contents
	Graphical Overview of Contents
	Graphical Overview of Contents

	Forward Model Learning
	Forward Model Learning
	Forward Model Learning
	Forward Model Learning
	Forward Model Learning
	Forward Model Learning
	End-To-End Forward Models
	End-To-End Forward Models
	End-To-End Forward Models
	End-To-End Forward Models
	End-To-End Forward Models
	End-To-End Forward Models
	Decomposed Forward Models[1]
	Decomposed Forward Models[1]
	Decomposed Forward Models[1]

	Local Forward Models
	Modelling Local Dependencies
	Modelling Local Dependencies
	Modelling Local Dependencies
	Modelling Local Dependencies
	Local Transition Function
	Local Transition Function
	Local Transition Function
	Local Transition Function
	Local Transition Function
	Local Transition Function
	Local Forward Model
	Local Forward Model
	Local Forward Model
	Local Forward Model

	Object-based Forward Model
	Modelling Entities of a Game I/II
	Modelling Entities of a Game I/II
	Modelling Entities of a Game I/II
	Modelling Entities of a Game II/II
	Modelling Entities of a Game II/II
	Modelling Entities of a Game II/II
	Object-based Forward Model
	Object-based Forward Model
	Object-based Forward Model
	Object-based Forward Model
	Object-based Forward Model
	Comparison of Proposed Models
	Comparison of Proposed Models
	Comparison of Proposed Models
	Comparison of Proposed Models
	Comparison of Proposed Models
	Comparison of Proposed Models

	Agent Model
	Prediction-based Search
	Prediction-based Search
	Prediction-based Search
	Prediction-based Search

	Evaluation
	Evaluation Setup I/II
	Evaluation Setup I/II
	Evaluation Setup II/II
	Evaluation Setup II/II
	Evaluation Setup II/II
	Evaluation Setup II/II
	Evaluation Setup II/II
	Learning a Constant Forward Model for each Game
	Learning a Constant Forward Model for each Game
	Learning a Constant Forward Model for each Game
	Evaluating Game-Playing Performance
	Evaluating Game-Playing Performance
	Detailed Game Results
	Detailed Game Results
	Detailed Game Results
	Aggregated Results: Game-Playing Performance
	Aggregated Results: Game-Playing Performance

	Conclusion
	Conclusion
	Conclusion
	Conclusion
	
	

	Appendix
	Publications
	Publications - Forward Model learning I/II
	Publications - Forward Model learning II/II
	Publications Predictive State-Determinization
	Publications on other Topics I/II
	Publications on other Topics II/II

	1.Plus:
	1.Reset:
	1.Minus:
	1.EndRight:
	1.StepRight:
	1.PlayPauseRight:
	1.PlayRight:
	1.PauseRight:
	1.PlayPauseLeft:
	1.PlayLeft:
	1.PauseLeft:
	1.StepLeft:
	1.EndLeft:
	anm1:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.366:
	0.365:
	0.364:
	0.363:
	0.362:
	0.361:
	0.360:
	0.359:
	0.358:
	0.357:
	0.356:
	0.355:
	0.354:
	0.353:
	0.352:
	0.351:
	0.350:
	0.349:
	0.348:
	0.347:
	0.346:
	0.345:
	0.344:
	0.343:
	0.342:
	0.341:
	0.340:
	0.339:
	0.338:
	0.337:
	0.336:
	0.335:
	0.334:
	0.333:
	0.332:
	0.331:
	0.330:
	0.329:
	0.328:
	0.327:
	0.326:
	0.325:
	0.324:
	0.323:
	0.322:
	0.321:
	0.320:
	0.319:
	0.318:
	0.317:
	0.316:
	0.315:
	0.314:
	0.313:
	0.312:
	0.311:
	0.310:
	0.309:
	0.308:
	0.307:
	0.306:
	0.305:
	0.304:
	0.303:
	0.302:
	0.301:
	0.300:
	0.299:
	0.298:
	0.297:
	0.296:
	0.295:
	0.294:
	0.293:
	0.292:
	0.291:
	0.290:
	0.289:
	0.288:
	0.287:
	0.286:
	0.285:
	0.284:
	0.283:
	0.282:
	0.281:
	0.280:
	0.279:
	0.278:
	0.277:
	0.276:
	0.275:
	0.274:
	0.273:
	0.272:
	0.271:
	0.270:
	0.269:
	0.268:
	0.267:
	0.266:
	0.265:
	0.264:
	0.263:
	0.262:
	0.261:
	0.260:
	0.259:
	0.258:
	0.257:
	0.256:
	0.255:
	0.254:
	0.253:
	0.252:
	0.251:
	0.250:
	0.249:
	0.248:
	0.247:
	0.246:
	0.245:
	0.244:
	0.243:
	0.242:
	0.241:
	0.240:
	0.239:
	0.238:
	0.237:
	0.236:
	0.235:
	0.234:
	0.233:
	0.232:
	0.231:
	0.230:
	0.229:
	0.228:
	0.227:
	0.226:
	0.225:
	0.224:
	0.223:
	0.222:
	0.221:
	0.220:
	0.219:
	0.218:
	0.217:
	0.216:
	0.215:
	0.214:
	0.213:
	0.212:
	0.211:
	0.210:
	0.209:
	0.208:
	0.207:
	0.206:
	0.205:
	0.204:
	0.203:
	0.202:
	0.201:
	0.200:
	0.199:
	0.198:
	0.197:
	0.196:
	0.195:
	0.194:
	0.193:
	0.192:
	0.191:
	0.190:
	0.189:
	0.188:
	0.187:
	0.186:
	0.185:
	0.184:
	0.183:
	0.182:
	0.181:
	0.180:
	0.179:
	0.178:
	0.177:
	0.176:
	0.175:
	0.174:
	0.173:
	0.172:
	0.171:
	0.170:
	0.169:
	0.168:
	0.167:
	0.166:
	0.165:
	0.164:
	0.163:
	0.162:
	0.161:
	0.160:
	0.159:
	0.158:
	0.157:
	0.156:
	0.155:
	0.154:
	0.153:
	0.152:
	0.151:
	0.150:
	0.149:
	0.148:
	0.147:
	0.146:
	0.145:
	0.144:
	0.143:
	0.142:
	0.141:
	0.140:
	0.139:
	0.138:
	0.137:
	0.136:
	0.135:
	0.134:
	0.133:
	0.132:
	0.131:
	0.130:
	0.129:
	0.128:
	0.127:
	0.126:
	0.125:
	0.124:
	0.123:
	0.122:
	0.121:
	0.120:
	0.119:
	0.118:
	0.117:
	0.116:
	0.115:
	0.114:
	0.113:
	0.112:
	0.111:
	0.110:
	0.109:
	0.108:
	0.107:
	0.106:
	0.105:
	0.104:
	0.103:
	0.102:
	0.101:
	0.100:
	0.99:
	0.98:
	0.97:
	0.96:
	0.95:
	0.94:
	0.93:
	0.92:
	0.91:
	0.90:
	0.89:
	0.88:
	0.87:
	0.86:
	0.85:
	0.84:
	0.83:
	0.82:
	0.81:
	0.80:
	0.79:
	0.78:
	0.77:
	0.76:
	0.75:
	0.74:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

