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Motivation
Computational Intelligence refers to the ability of a computer to learn a specific task from
data or experimental observation.

• steering of self-driving cars and parking aids
• automating a production pipeline
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Motivation
Computational Intelligence refers to the ability of a computer to learn a specific task from
data or experimental observation.

• steering of self-driving cars and parking aids
• automating a production pipeline

Problems:
• real tasks are hard to setup and evaluate
• failure of the algorithm has considerable cost (e.g. car crash)

Games can be simulations of real world tasks

• quantifiable goal, varying difficulty, and large data sets
• digital games are fully accessible to computers
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A Short History of Computational Intelligence in Games

these were achieved using reinforcement learning algorithms and months of training
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heuristic solutions, planning agents and reinforcement learning agents

these were achieved using reinforcement learning algorithms and months of training
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Agent-Environment Interface

state reward action

Environment

Agent

St Rt At

Rt+1

St+1

A general framework for studying games which consists of the elements:

• Agent: the learner and decision-maker
• Environment: anything the agent interacts with, e.g. a game
• Actions: Agent and environment interact continuously interact with each other.

• the agent selects an action
• the environment responds to those actions

• Reward: numerical values provided that the agent tries to maximize over time.
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Components of a Game

states S0, . . . , St ,
actions A0, . . . , At

State Transition Function

Reward Function

state St+1

reward Rt+1

Environment

State St ∈ S can be perceived through multiple sensors (S(1)
t , S(2)

t , . . . , S(n)
t ).

• a state may not be fully observable (partial information game)

The whole environment can be modelled as a probability distribution of possible outcomes:
P(Rt+1, St+1 | S0, A0, S1, A1, . . . , St , At)

• but we can also model both components separately
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Methods for Computational Intelligence in Games

Knowledge of Expected Return
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Methods for Computational Intelligence in Games
two popular learning approaches:

• learn which actions are good
• learn to anticipate the future
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• performance depends on the
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Simulation-Based Search Algorithms

current state

Actionsa1 a2

Ap
pl
yi
ng

Ga
m
e
M
od

el

P(•|a1) = 1 P(•|a2) = 0.5

Input:

• current state
• game-model

Output:

• action with highest win-rate

How to handle games for which:

• the game model is unknown?
• the state cannot be fully observed?
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Forward Model Learning

Goal: Learn to predict upcoming states of the environment.

Definition: Forward Model
• A forward model fm maps the environment’s state St and the agent’s action At at time

t to the upcoming state St+1 of the environment:
fm : (S ×A)→ S (St , At) 7−→ St+1

• This definition only applies to environment models that fulfil the Markov property.

Markov Property:
• The environment fulfills the Markov property in case the upcoming state is independent

of all states but the present state.
P(St+1 | S0, A0, S1, A1, . . . , St , At) ⇒ P(St+1 | St , At)
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Learning a model of the game:
• Gather experience while playing. Each observed

state-transition equals one training example.
• Train a model given all observations.
⇒ The number of required examples can be dependent

on the complexity of the state and action space

The following methods represent attempts to reduce
the complexity of the learning problem.
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Decomposed Forward Models[1]

Assumptions:
• sensor values can be modelled independently

∀i , j ∈ 1..n : i 6= j ⇒ S(i)
t+1⊥⊥ S(j)

t+1 | St , At
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i
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Modelling Local Dependencies
Assumptions:

• structured representation of the state
• requires a similarity or distance function for sensor values
• semantic of a sensor-value is independent of its index

Tile-based Representation (of Video Games):
• a state can be represented as a matrix T of size n ×m

T =

 T (1, 1) . . . T (1, m)
... . . . ...

T (n, 1) . . . T (n, m)


• T (x , y) specifies the observed tile at position (x , y)

Game-State of Sokoban

Tilemap Components
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Local Transition Function
Decompose the forward model into one sub-model per tile:

fm
x ,y

:
(
N(x , y)t , At

)
7−→ T (x , y)t+1

• N(x , y)t describes the local neighbourhood of tile T (x , y) at time t
• it contains each tile with distance less than a given threshold

Game-State of Sokoban Local Neighborhood
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Decompose the forward model into one sub-model per tile:

fm
x ,y

:
(
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7−→ T (x , y)t+1

• N(x , y)t describes the local neighbourhood of tile T (x , y) at time t
• it contains each tile with distance less than a given threshold
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Local Forward Model
Predict the next state by predicting each tile

Tt+1 =

 fm1,1(N(1, 1), At) . . . fm1,m(N(1, m), At)
... . . . ...

fmn,1(N(n, 1), At) . . . fmn,m(N(n, m), At)



In case the semantic of a tile is independent of its
position, only a single model needs to be learned

Advantage: higher sampling efficiency
• each observed state transition consists of one ob-

served pattern per tile (in total: n ×m patterns)

Environment’s State

Local Forward Model
(separate calls)

(1)
S

Predicted Environment’s State

t

(2)
St

(3)
St

(4)
St

(n)
St
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(4)
S

(n)
S...

t+1 t+1 t+1 t+1
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Modelling Entities of a Game I/II

Measuring the importance of each tile in the local neigh-
borhood indicates a high importance of the center tile.
⇒ instead of modelling the change of each position,
model the change of represented objects

Object-based Representation
• the state consists of multiple entities of which

several attributes can be observed

Feature Importance of
Neighborhood Tiles

S = (S(1), S(2), . . . , S(n))
= (S(1,1), . . . , S(1,i)︸ ︷︷ ︸

Object 1

, S(2,1), . . . , S(2,j)︸ ︷︷ ︸
Object 2

, . . . , S(m,1), . . . , S(m,k)︸ ︷︷ ︸
Object m

)
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Modelling Entities of a Game II/II

Assumptions:
• game components are considered to represent indepently acting entities
• similar looking objects exhibit similar behavior

Create one model for each entity or entity type

fm
i

:
(
(S(i ,1)

t , . . . , S(i ,k)
t ), At

)
7−→ (S(i ,1)

t+1 , . . . , S(i ,k)
t+1 )

Complex entities can be modelled using a decomposed forward model
• create one model for each observable sensor value

fm
i ,j

:
(
(S(i ,1)

t , . . . , S(i ,k)
t ), At

)
7−→ S(i ,j)

t+1
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Object-based Forward Model
Aggregate the prediction of each object and its associated sensor values:

fm(St , At) = (fm
1

(St , At), . . . , fm
n

(St , At))

= ((fm
1,1

((S(1,1)
t , . . . , S(1,k)

t ), At), . . . , fm
m,k

((S(m,1)
t , . . . , S(m,k′)

t ), At)))

= (S(1)
t+1, S(2)

t+1, . . . , S(n)
t+1) = St+1
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Future Environment State
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Comparison of Proposed Models
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Comparison of Proposed Models

Qualitative comparison of proposed forward models architectures;

(+) well suited, (~) neutral, (—) poorly suited

Forward Model #Models Model Interpret- Transfer
Complexity ability across levels

End-To-End + — — —
Decomposed — ~ ~ —
Local + + + +
Object-based ~ ~ + +
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Prediction-based Search
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Prediction-based Search

observe forward model 
input patterns
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contained objects and 
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current state
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Prediction-based Search
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Evaluation Setup I/II

The evaluation is based on 30 games of the General Video Game AI (GVGAI) framework
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Evaluation Setup I/II

The evaluation is based on 30 games of the General Video Game AI (GVGAI) framework

Varying Game Characteristics:
• types and number of NPCs
• use of a ressource system
• reward style (dense/sparse)
• the number and types of termination conditions
• determinism vs. non-determinism
• the number of actions available
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Evaluation Setup II/II

Local and Object-based Forward Models (LFM/OBFM) have been used in conjunction with:

• Breadth First Search (BFS)
• Rolling Horizon Evoluationary Algorithm (RHEA)
• Monte Carlo Tree Search (MCTS)

Trained agents are compared to a random agent
• in previous research competitions no agent performed significantly better

Scenarios for Evaluating the Game-Playing Performance
• Constant Model
• Continuous-Learning
• Transfer-Learning
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Learning a Constant Forward Model for each Game
Data Set Generation

• collection of observed state transitions of a random agent
• all 5 levels were played 10 times for a maximum of 200 ticks each
• 9 different local neighborhood patterns were extracted (one data set each)

Accuracy Evaluation and Model Selection
• evaluation of 5 classifiers, multiple parameters
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Evaluating Game-Playing Performance
agents are ranked according to their:

• average win-rate, average score, average ticks of won and lost games
• results are clustered to find groups of games in which the agent performs similar
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Detailed Game Results
Results on Maze-Like Games

Rank Comparison:
BFS = MCTS > RHEA > Random
LFM > OBFM > Random

all effects are local
decepticoins, deceptizelda and painter in-
volve spawning elements, which OBFM
cannot model
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Detailed Game Results
Results on Puzzle Games

Rank Comparison:
BFS > MCTS > RHEA > Random
OBFM > LFM > Random

most but not all effects are local
(e.g. Doorkoban)
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Detailed Game Results
Results on Games with Sparse Reward

Rank Comparison:
Random > RHEA > BFS = MCTS
Random > OBFM = LFM

rare rewards hinder in agent in distinguish-
ing good and bad actions
more training data is required to create a
reliable model
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Aggregated Results: Game-Playing Performance
Aggregated ranks over all tested games and final score per agent

Agents Rank Formula-1
1st 2nd 3rd 4th 5th 6th 7th Score

Random 4 0 1 3 3 4 15 303

LFM
BFS 10 5 4 4 2 2 3 502
RHEA 3 3 3 8 3 10 0 380
MCTS 5 3 8 4 2 4 4 423

OBFM
BFS 6 8 2 4 4 1 5 450
RHEA 3 5 6 2 10 4 0 411
MCTS 5 7 4 3 5 4 2 441

Formula-1 Scoring System: 1st = 25, 2nd = 18, 3rd = 15, 4th = 12,
5th = 10, 6th = 8, 7th = 6

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 25 / 28

mailto:alexander.dockhorn@ovgu.de


Aggregated Results: Game-Playing Performance
Aggregated ranks over all tested games and final score per agent

Agents Rank Formula-1
1st 2nd 3rd 4th 5th 6th 7th Score

Random 4 0 1 3 3 4 15 303

LFM
BFS 10 5 4 4 2 2 3 502
RHEA 3 3 3 8 3 10 0 380
MCTS 5 3 8 4 2 4 4 423

OBFM
BFS 6 8 2 4 4 1 5 450
RHEA 3 5 6 2 10 4 0 411
MCTS 5 7 4 3 5 4 2 441

Formula-1 Scoring System: 1st = 25, 2nd = 18, 3rd = 15, 4th = 12,
5th = 10, 6th = 8, 7th = 6

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 25 / 28

mailto:alexander.dockhorn@ovgu.de


Conclusion
Simulation-based search requires extensions to be used in case:

• the environment’s forward model is inaccessible
• the environment’s state is partial observable
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Four types of forward models were introduced.
• The underlying independency assumptions reduced the size

of the model space and the required training time.
• A prediction-based search agent has been proposed.
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Four types of forward models were introduced.
• The underlying independency assumptions reduced the size

of the model space and the required training time.
• A prediction-based search agent has been proposed.

Agents were succesfully trained to play GVGAI games.
• trained agents achieved a high state prediction accuracy and

game-playing performance
• learned models can be transferred to unobserved levels

Agents Formula-1
Score

Random 303

LFM
BFS 502
RHEA 380
MCTS 423

OBFM
BFS 450
RHEA 411
MCTS 441
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State-of-the-Art Proposed Solution

Thank you for your attention!
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