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Motivation
Computational Intelligence refers to the ability of a computer to learn a specific task from
data or experimental observation.

• steering of self-driving cars and parking aids
• automating a production pipeline
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Motivation
Computational Intelligence refers to the ability of a computer to learn a specific task from
data or experimental observation.

• steering of self-driving cars and parking aids
• automating a production pipeline

Problems:
• real tasks are hard to setup and evaluate
• failure of the algorithm has considerable cost (e.g. car crash)

Games can be simulations of real world tasks

• quantifiable goal, varying difficulty, and large data sets
• digital games are fully accessible to computers
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A Short History of Computational Intelligence in Games

these were achieved using reinforcement learning algorithms and months of training
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heuristic solutions, planning agents and reinforcement learning agents

these were achieved using reinforcement learning algorithms and months of training
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Agent-Environment Interface

state reward action

Environment

Agent

St Rt At

Rt+1

St+1

A general framework for studying games which consists of the elements:

• Agent: the learner and decision-maker
• Environment: anything the agent interacts with, e.g. a game
• Actions: Agent and environment interact continuously interact with each other.

• the agent selects an action
• the environment responds to those actions

• Reward: numerical values provided that the agent tries to maximize over time.
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Components of a Game

states S0, . . . , St ,
actions A0, . . . , At

State Transition Function

Reward Function

state St+1

reward Rt+1

Environment

State St ∈ S can be perceived through multiple sensors (S(1)
t , S(2)

t , . . . , S(n)
t ).

• a state may not be fully observable (partial information game)

The whole environment can be modelled as a probability distribution of possible outcomes:
P(Rt+1, St+1 | S0, A0, S1, A1, . . . , St , At)

• but we can also model both components separately
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Methods for Computational Intelligence in Games

Knowledge of Expected Return
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Methods for Computational Intelligence in Games
two popular learning approaches:

• learn which actions are good
• learn to anticipate the future
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• performance depends on the
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Simulation-Based Search Algorithms

current state

Actionsa1 a2

Ap
pl
yi
ng

Ga
m
e
M
od

el

P(•|a1) = 1 P(•|a2) = 0.5

Input:

• current state
• game-model

Output:

• action with highest win-rate

How to handle games for which:

• the game model is unknown?
• the state cannot be fully observed?
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Forward Model Learning

Goal: Learn to predict upcoming states of the environment.

Definition: Forward Model
• A forward model fm maps the environment’s state St and the agent’s action At at time

t to the upcoming state St+1 of the environment:
fm : (S ×A)→ S (St , At) 7−→ St+1

• This definition only applies to environment models that fulfil the Markov property.

Markov Property:
• The environment fulfills the Markov property in case the upcoming state is independent

of all states but the present state.
P(St+1 | S0, A0, S1, A1, . . . , St , At) ⇒ P(St+1 | St , At)
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Learning a model of the game:
• Gather experience while playing. Each observed

state-transition equals one training example.
• Train a model given all observations.
⇒ The number of required examples can be dependent

on the complexity of the state and action space

The following methods represent attempts to reduce
the complexity of the learning problem.
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Decomposed Forward Models[1]

Assumptions:
• sensor values can be modelled independently

∀i , j ∈ 1..n : i 6= j ⇒ S(i)
t+1⊥⊥ S(j)

t+1 | St , At
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t+1 | St , At

Learn one sub-model for each observable sensor value
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i
: (St , At) 7−→ S(i)

t+1

Aggregate the result of each sensor value prediction
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Modelling Local Dependencies
Assumptions:

• structured representation of the state
• requires a similarity or distance function for sensor values
• semantic of a sensor-value is independent of its index

Tile-based Representation (of Video Games):
• a state can be represented as a matrix T of size n ×m

T =

 T (1, 1) . . . T (1, m)
... . . . ...

T (n, 1) . . . T (n, m)


• T (x , y) specifies the observed tile at position (x , y)

Game-State of Sokoban

Tilemap Components
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Local Transition Function
Decompose the forward model into one sub-model per tile:

fm
x ,y

:
(
N(x , y)t , At

)
7−→ T (x , y)t+1

• N(x , y)t describes the local neighbourhood of tile T (x , y) at time t
• it contains each tile with distance less than a given threshold

Game-State of Sokoban Local Neighborhood
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Decompose the forward model into one sub-model per tile:
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x ,y
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7−→ T (x , y)t+1

• N(x , y)t describes the local neighbourhood of tile T (x , y) at time t
• it contains each tile with distance less than a given threshold
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Local Forward Model
Predict the next state by predicting each tile

Tt+1 =

 fm1,1(N(1, 1), At) . . . fm1,m(N(1, m), At)
... . . . ...

fmn,1(N(n, 1), At) . . . fmn,m(N(n, m), At)



In case the semantic of a tile is independent of its
position, only a single model needs to be learned

Advantage: higher sampling efficiency
• each observed state transition consists of one ob-

served pattern per tile (in total: n ×m patterns)

Environment’s State

Local Forward Model
(separate calls)
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S

Predicted Environment’s State

t
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Modelling Entities of a Game I/II

Measuring the importance of each tile in the local neigh-
borhood indicates a high importance of the center tile.
⇒ instead of modelling the change of each position,
model the change of represented objects

Object-based Representation
• the state consists of multiple entities of which

several attributes can be observed

Feature Importance of
Neighborhood Tiles

S = (S(1), S(2), . . . , S(n))
= (S(1,1), . . . , S(1,i)︸ ︷︷ ︸

Object 1

, S(2,1), . . . , S(2,j)︸ ︷︷ ︸
Object 2

, . . . , S(m,1), . . . , S(m,k)︸ ︷︷ ︸
Object m

)
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Modelling Entities of a Game II/II

Assumptions:
• game components are considered to represent indepently acting entities
• similar looking objects exhibit similar behavior

Create one model for each entity or entity type

fm
i

:
(
(S(i ,1)

t , . . . , S(i ,k)
t ), At

)
7−→ (S(i ,1)

t+1 , . . . , S(i ,k)
t+1 )

Complex entities can be modelled using a decomposed forward model
• create one model for each observable sensor value

fm
i ,j

:
(
(S(i ,1)

t , . . . , S(i ,k)
t ), At

)
7−→ S(i ,j)

t+1
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Object-based Forward Model
Aggregate the prediction of each object and its associated sensor values:

fm(St , At) = (fm
1

(St , At), . . . , fm
n

(St , At))

= ((fm
1,1

((S(1,1)
t , . . . , S(1,k)

t ), At), . . . , fm
m,k

((S(m,1)
t , . . . , S(m,k′)

t ), At)))

= (S(1)
t+1, S(2)

t+1, . . . , S(n)
t+1) = St+1
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Object-based Forward Model
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Comparison of Proposed Models
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Comparison of Proposed Models

Qualitative comparison of proposed forward models architectures;

(+) well suited, (~) neutral, (—) poorly suited

Forward Model #Models Model Interpret- Transfer
Complexity ability across levels

End-To-End + — — —
Decomposed — ~ ~ —
Local + + + +
Object-based ~ ~ + +
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Prediction-based Search
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Prediction-based Search

observe forward model 
input patterns

observe changes in 
contained objects and 

reward

current state

previous state

forward model

score model

score model
training data

forward model
training data

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 19 / 28

mailto:alexander.dockhorn@ovgu.de


Prediction-based Search

prediction-based searchprediction-based search

observe forward model 
input patterns

observe changes in 
contained objects and 

reward

current state

predicted state

previous state

forward model

score model

score model
training data

forward model
training data

selected action

predict states 
using forward model

predict reward 
using score model

A. Dockhorn Prediction-based Search for Autonomous Game-Playing 19 / 28

mailto:alexander.dockhorn@ovgu.de


Prediction-based Search

prediction-based searchprediction-based search
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Evaluation Setup I/II

The evaluation is based on 30 games of the General Video Game AI (GVGAI) framework
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Evaluation Setup I/II

The evaluation is based on 30 games of the General Video Game AI (GVGAI) framework

Varying Game Characteristics:
• types and number of NPCs
• use of a ressource system
• reward style (dense/sparse)
• the number and types of termination conditions
• determinism vs. non-determinism
• the number of actions available
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Evaluation Setup II/II

Local and Object-based Forward Models (LFM/OBFM) have been used in conjunction with:

• Breadth First Search (BFS)
• Rolling Horizon Evoluationary Algorithm (RHEA)
• Monte Carlo Tree Search (MCTS)

Trained agents are compared to a random agent
• in previous research competitions no agent performed significantly better

Scenarios for Evaluating the Game-Playing Performance
• Constant Model
• Continuous-Learning
• Transfer-Learning
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Learning a Constant Forward Model for each Game
Data Set Generation

• collection of observed state transitions of a random agent
• all 5 levels were played 10 times for a maximum of 200 ticks each
• 9 different local neighborhood patterns were extracted (one data set each)

Accuracy Evaluation and Model Selection
• evaluation of 5 classifiers, multiple parameters
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Evaluating Game-Playing Performance
agents are ranked according to their:

• average win-rate, average score, average ticks of won and lost games
• results are clustered to find groups of games in which the agent performs similar
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Detailed Game Results
Results on Maze-Like Games

Rank Comparison:
BFS = MCTS > RHEA > Random
LFM > OBFM > Random

all effects are local
decepticoins, deceptizelda and painter in-
volve spawning elements, which OBFM
cannot model
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Detailed Game Results
Results on Puzzle Games

Rank Comparison:
BFS > MCTS > RHEA > Random
OBFM > LFM > Random

most but not all effects are local
(e.g. Doorkoban)
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Detailed Game Results
Results on Games with Sparse Reward

Rank Comparison:
Random > RHEA > BFS = MCTS
Random > OBFM = LFM

rare rewards hinder in agent in distinguish-
ing good and bad actions
more training data is required to create a
reliable model
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Aggregated Results: Game-Playing Performance
Aggregated ranks over all tested games and final score per agent

Agents Rank Formula-1
1st 2nd 3rd 4th 5th 6th 7th Score

Random 4 0 1 3 3 4 15 303

LFM
BFS 10 5 4 4 2 2 3 502
RHEA 3 3 3 8 3 10 0 380
MCTS 5 3 8 4 2 4 4 423

OBFM
BFS 6 8 2 4 4 1 5 450
RHEA 3 5 6 2 10 4 0 411
MCTS 5 7 4 3 5 4 2 441

Formula-1 Scoring System: 1st = 25, 2nd = 18, 3rd = 15, 4th = 12,
5th = 10, 6th = 8, 7th = 6
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Conclusion
Simulation-based search requires extensions to be used in case:

• the environment’s forward model is inaccessible
• the environment’s state is partial observable
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Four types of forward models were introduced.
• The underlying independency assumptions reduced the size

of the model space and the required training time.
• A prediction-based search agent has been proposed.
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Four types of forward models were introduced.
• The underlying independency assumptions reduced the size

of the model space and the required training time.
• A prediction-based search agent has been proposed.

Agents were succesfully trained to play GVGAI games.
• trained agents achieved a high state prediction accuracy and

game-playing performance
• learned models can be transferred to unobserved levels

Agents Formula-1
Score

Random 303

LFM
BFS 502
RHEA 380
MCTS 423

OBFM
BFS 450
RHEA 411
MCTS 441
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State-of-the-Art Proposed Solution

Thank you for your attention!
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